770 likes | 1.77k Views
TOPIC 6 LATERAL EARTH PRESSURE. Course : S0705 – Soil Mechanic Year : 2008. CONTENT. RETAINING EARTH WALL (SESSION 21-22 : F2F) RANKINE METHOD (SESSION 21-22 : F2F) ACTIVE LATERAL PRESSURE PASSIVE LATERAL PRESSURE COULOMB METHOD (SESSION 23-24 : OFC) ACTIVE LATERAL PRESSURE
E N D
TOPIC 6 LATERAL EARTH PRESSURE Course : S0705 – Soil Mechanic Year : 2008
CONTENT • RETAINING EARTH WALL (SESSION 21-22 : F2F) • RANKINE METHOD (SESSION 21-22 : F2F) • ACTIVE LATERAL PRESSURE • PASSIVE LATERAL PRESSURE • COULOMB METHOD (SESSION 23-24 : OFC) • ACTIVE LATERAL PRESSURE • PASSIVE LATERAL PRESSURE • LATERAL PRESSURE DUE TO EXTERNAL LOAD (SESSION 23-24 : OFC) • DYNAMIC EARTH PRESSURE (SESSION 23-24 : OFC)
SESSION 21-22RETAINING EARTH WALL RANKINE METHOD
RETAINING EARTH WALL Defined as a wall that is built to resist the lateral pressure of soil – especially a wall built to prevent the advance of a mass of earth/soil
EARTH LATERAL PRESSURE • Defined as soil stress/pressure at horizontal direction and a function of vertical stress • Cause by self weight of soil and or external load • 3 conditions : • Lateral Pressure at Rest • Active Lateral Pressure • Passive Lateral Pressure
Case I EARTH LATERAL PRESSURE Lateral Pressure at rest
Case II EARTH LATERAL PRESSURE Active Lateral Pressure
Case III EARTH LATERAL PRESSURE Passive Lateral Pressure
EARTH LATERAL PRESSURE q Jaky, Broker and Ireland Ko = M – sin ’ Sand, Normally consolidated clay M = 1 Clay with OCR > 2 M = 0.95 v = . z + q Broker and Ireland z Ko = 0.40 + 0.007 PI , 0 PI 40 Ko = 0.64 + 0.001 PI , 40 PI 80 v h Sherif and Ishibashi Ko = + (OCR – 1) • = 0.54 + 0.00444 (LL – 20) • = 0.09 + 0.00111 (LL – 20) LL > 110% = 1.0 ; = 0.19 At rest, K = Ko
RANKINE METHOD ACTIVE LATERAL PRESSURE 1 = 3 . tan2 (45+/2)+2c.tan (45+/2) a = v . tan2(45-/2) – 2c . tan (45-/2) a = v . Ka – 2cKa Ka = tan2 (45 - /2)
RANKINE METHOD PASSIVE LATERAL PRESSURE
RANKINE METHOD PASSIVE LATERAL PRESSURE p= v . tan2(45+/2) + 2c . tan (45+/2)
RANKINE METHOD PASSIVE LATERAL PRESSURE Kp = tan2 (45 + /2) h = v . Kp + 2cKp
EXAMPLE q = 20 kN/m2 h1 = 2 m h2 = 8 m Sheet Pile 1 = 15 kN/m3 1 = 10 o c1 = 0 kN/m2 2 = 15 kN/m3 2 = 15 o c2 = 0 kN/m2 h3 = 4 m • Questions: • Determine the active and passive lateral pressure of sheet pile structure • Determine the total lateral pressure
SOLUTION q = 20 kN/m2 2 m 8 m Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 Passive ; kp = tan2(45+2/2) = 1.698 Pa1 4 m Pw1 Pw2 Pq1 Pp1 Pa2 Active Lateral Pressure Pa1 = ka . 1 . h1 – 2 . c . ka = 0.704 . 15 . 2 – 2 . 0 . 0.704 = 21.12 kN/m2 Pa2 = ka . (1 . h1 + 1’ . h2) – 2 . c . ka = 49.28 kN/m2
SOLUTION q = 20 kN/m2 2 m 8 m Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 Passive ; kp = tan2(45+2/2) = 1.698 Pa1 4 m Pw1 Pw2 Pq1 Pp1 Pa2 Active Lateral Pressure Pq1 = ka . q = 0.704 . 20 = 14.08 kN/m2 Pw1 = kw . w . h2 = 1 . 10 . 8 = 80 kN/m2
SOLUTION q = 20 kN/m2 2 m 8 m Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 Passive ; kp = tan2(45+2/2) = 1.698 Pa1 4 m Pw1 Pw2 Pq1 Pp1 Pa2 PASSIVE LATERAL PRESSURE Pp1 = kp . 2’ . h3 + 2 . c . kp = 1.698 . 5 . 4 + 2 . 0 . 1.698 = 33.96 kN/m2 Pw2 = kw . w . h3 = 1 . 10 . 4 = 40 kN/m2
SOLUTION q = 20 kN/m2 2 m 8 m Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 Passive ; kp = tan2(45+2/2) = 1.698 Pa1 Pa za Pp 4 m zp Pw1 Pw2 Pq1 Pp1 Pa2 ACTIVE LATERAL FORCE Pa = 0.5 . Pa1 . h1 + (Pa1+Pa2)/2 . H2 + Pq1 . (h1+h2) + 0.5 . Pw1 . h2 = 763.52 kN/m za = 3.56 m
SOLUTION q = 20 kN/m2 2 m 8 m Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 Passive ; kp = tan2(45+2/2) = 1.698 Pa1 Pa za Pp 4 m zp Pw1 Pw2 Pq1 Pp1 Pa2 PASSIVE LATERAL FORCE Pp = 0.5 . Pp1 . h3 + 0.5 . Pw2 . h3 = 147.92 kN/m zp = 4/3 m
SESSION 23-24COULOMB METHOD LATERAL PRESSURE DUE TO EXTERNAL LOAD DYNAMIC EARTH PRESSURE
COULOMB METHOD ACTIVE LATERAL PRESSURE • Assumption: • Fill material is granular • Friction of wall and fill material is considered • The failure surface in the soil mass would be a plane (BC1, BC2 …) Pa = ½ Ka . . H2
EXAMPLE Consider the retaining wall shown in the following figure. Given - H = 4.6 m - = 16.5 kN/m3 - = 30 o - = 2/3 - c = 0 - = 0 - = 90 o Calculate the Coulomb’s active force per unit length of the wall
SOLUTION Ka = 0.297 Pa = 51.85 kN/m
COULOMB METHOD PASSIVE LATERAL PRESSURE Pp = ½ Kp . . H2
LATERAL EARTH PRESSURE DUE TO SURCHARGE a > 0,4 a 0,4
EXAMPLE Refer to the following figure. For kv = 0 and kh = 0.3, determine : • Pae • The location of the resultant, z, from the bottom of the wall = 35 o = 18 kN/m3 = 17.5 o 5 m
SOLUTION Part a. Kae = 0.47
SOLUTION • Part b. Where : Ka = 0.25 = 90o = 17.5o = 0o Pa = 56.25 kN/m Pae = Pae – Pa = 105.75 – 56.25 = 49.5 kN/m