1 / 9

Érdekes pontok kinyerése digitális képeken

Érdekes pontok kinyerése digitális képeken. Bevezetés. Alapprobléma Jellemzőpontok detektálása mindkét képen Kinyert pontok megfeleltetése Megfeleltetések alapján a képpár illesztése Megválaszolandó kérdések Melyek azok a pontok, amelyeket megbízható módon detektálhatunk a képeken?

petula
Download Presentation

Érdekes pontok kinyerése digitális képeken

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Érdekespontokkinyerésedigitálisképeken

  2. Bevezetés • Alapprobléma • Jellemzőpontok detektálása mindkét képen • Kinyert pontok megfeleltetése • Megfeleltetések alapján a képpár illesztése • Megválaszolandó kérdések • Melyek azok a pontok, amelyeket megbízható módon detektálhatunk a képeken? • Sarokpontok • Hogyan tudjuk leírni/jellemezni a kinyert pontokat? • Invariáns jellemzők • Hogyan feleltessünk meg két képről kinyert pontokat? • Jellemzők összehasonlítása, robusztusság

  3. Lokális leírók • A detektált pontokat hogyan tudnánk leírni úgy, hogy az: • invariáns • egyedi legyen • A kinyert pontok önmagukban nem jellemezhetők jól • egyetlen intenzitás-érték nem elég stabil és egyedi • A pontok környezete már elég egyedi lehet, de az invariancia biztosítása nem triviális • Tekintsük a pontot tartalmazó ablak tartalmát

  4. SIFT: SCALE INVARIANT FEATURE TRANSFORM • Skála- és irány független fotometriailag invariáns pont-leírókat állít elő az alábbi főbb lépésekben: • Skála meghatározása • DoGszélsőérték helyek térben és skálában • Lokális orientáció: a domináns gradiens irány • A skála és orientáció minden egyes pontban meghatároz egy lokális koordinátarendszert • A kapott leírók skála- és irány függetlenek lesznek • Számítsunk gradiens irány-hisztogramokat több kisebb ablakban, amiből leíró vektort képezünk

  5. SURF: SpeededUp Robust Feature • Új skála-invariáns, jellemző-kinyerő módszer • Számítási igénye alacsonyabb a legtöbb módszernél, mégis nagy hatásfokkal működik • Aképek integráltját használja fel a konvolúciós lépés során • Alapötletét a SIFT szolgáltatta, azonban Haar-féle leírókat használ a képek jellemzésére

  6. FAST: Features from Accelerated Segment Test • Egyszerű sarokdetektor a jellemző pontok kinyerésére. • Alacsony számításigényű • Valós idejű videó-feldolgozás • Egy pixel adott sugarú környezetében vizsgálja a többi pixelt • Ha a környezetben szerepelő intenzitás értékek nagyobbak, vagy kisebbek, mint a középpont: sarok • Sarkok egy halmazát találja meg • Metrika a sarkok erősségének mérésére • OpenCV: kétmenetes algoritmus • Rendkívüli gyors számítást tesz lehetővé

  7. ORB: Oriented FAST and Rotated BRIEF • Rendkívül gyors bináris jellemző leírást tesz lehetővé • A BRIEF és FAST algoritmusokon alapul • Forgatás invariáns és ellenáll a zajnak • Kétszer gyorsabb a SIFT-nél, valamint a SURF-nél • Számos helyzetben jobban alkalmazható • Valós idejű feldolgozás • Nincsenek licencezési problémák sem

  8. MSER: Maximally Stable ExtremalRegions • Összetartozások detektálása olyan képeken, ahol: • Az objektum különböző szögből látszik • Nagyszámú képi elemeket tesz közzé az összetartozó képekről • Kimerítő illesztés • Jól alkalmazható sztereó párosítás és objektum-felismerés során is. • A vizsgált kép egymás utáni küszöbölésével határoz meg kapcsolódó komponenseket

  9. Star Feature Detector • A CenSurE eljáráson alapul. • Két egymással átfedésben lévő elforgatott téglalap alakú szűrőt használ • A szűrőt és annak hét skáláját alkalmazzák a kép összes pixelére. • A minták mérete konstans minden egyes skála illesztése során • Teljes térbeli felbontást eredményez minden egyes skálára nézve.

More Related