230 likes | 558 Views
Pertemuan 13 Analisis Ragam (Varians) - 2. Matakuliah : I0272 – Statistik Probabilitas Tahun : 2005 Versi : Revisi. Learning Outcomes. Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat membandingkan beberapa perlakuan. Outline Materi.
E N D
Pertemuan 13Analisis Ragam (Varians) - 2 Matakuliah : I0272 – Statistik Probabilitas Tahun : 2005 Versi : Revisi
Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Mahasiswa akan dapat membandingkan beberapa perlakuan.
Outline Materi • Analisis varians klasifikasi dua arah • Analisis varians bebas sebaran
Analysis of Variance and Experimental Design • An Introduction to Analysis of Variance • Analysis of Variance: Testing for the Equality of k Population Means • Multiple Comparison Procedures • An Introduction to Experimental Design • Completely Randomized Designs • Randomized Block Design
An Introduction to Analysis of Variance • Analysis of Variance(ANOVA) can be used to test for the equality of three or more population means using data obtained from observational or experimental studies. • We want to use the sample results to test the following hypotheses. H0: 1=2=3=. . . = k Ha: Not all population means are equal • If H0 is rejected, we cannot conclude that all population means are different. • Rejecting H0 means that at least two population means have different values.
Assumptions for Analysis of Variance • For each population, the response variable is normally distributed. • The variance of the response variable, denoted 2, is the same for all of the populations. • The observations must be independent.
Analysis of Variance:Testing for the Equality of K Population Means • Between-Samples Estimate of Population Variance • Within-Samples Estimate of Population Variance • Comparing the Variance Estimates: The F Test • The ANOVA Table
Randomized Block Design • The ANOVA Procedure • Computations and Conclusions
The ANOVA Procedure • The ANOVA procedure for the randomized block design requires us to partition the sum of squares total (SST) into three groups: sum of squares due to treatments, sum of squares due to blocks, and sum of squares due to error. • The formula for this partitioning is SST = SSTR + SSBL + SSE • The total degrees of freedom, nT - 1, are partitioned such that k - 1 degrees of freedom go to treatments, b - 1 go to blocks, and (k - 1)(b - 1) go to the error term.
ANOVA Table for aRandomized Block Design Source of Sum of Degrees of Mean Variation Squares Freedom Squares F TreatmentsSSTR k - 1 BlocksSSBL b - 1 ErrorSSE (k - 1)(b - 1) TotalSST nT - 1
Contoh Soal: Eastern Oil Co. Eastern Oil has developed three new blends of gasoline and must decide which blend or blends to produce and distribute. A study of the miles per gallon ratings of the three blends is being conducted to determine if the mean ratings are the same for the three blends. Five automobiles have been tested using each of the three gasoline blends and the miles per gallon ratings are shown on the next slide.
Contoh Soal: Eastern Oil Co. Automobile Type of Gasoline (Treatment) Blocks (Block)Blend XBlend YBlend Z Means 1 31 30 30 30.333 2 30 29 29 29.333 3 29 29 28 28.667 4 33 31 29 31.000 5 26 25 26 25.667 Treatment Means 29.8 28.8 28.4
Contoh Soal: Eastern Oil Co. • Randomized Block Design • Mean Square Due to Treatments The overall sample mean is 29. Thus, SSTR = 5[(29.8 - 29)2 + (28.8 - 29)2 + (28.4 - 29)2] = 5.2 MSTR = 5.2/(3 - 1) = 2.6 • Mean Square Due to Blocks SSBL = 3[(30.333 - 29)2 + . . . + (25.667 - 29)2] = 51.33 MSBL = 51.33/(5 - 1) = 12.8 • Mean Square Due to Error SSE = 62 - 5.2 - 51.33 = 5.47 MSE = 5.47/[(3 - 1)(5 - 1)] = .68
Contoh Soal: Eastern Oil Co. • Randomized Block Design • Rejection Rule Assuming = .05, F.05 = 4.46 (2 d.f. numerator and 8 d.f. denominator). Reject H0 if F > 4.46. • Test Statistic F = MSTR/MSE = 2.6/.68 = 3.82 • Conclusion Since 3.82 < 4.46, we cannot reject H0. There is not sufficient evidence to conclude that the miles per gallon ratings differ for the three gasoline blends.