280 likes | 415 Views
What do we know about the identity of CR sources?. Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL. The cosmic-ray spectrum & Composition. log [dJ/dE]. E -2.7. Galactic. Protons. E -3. Source: Supernovae(?). X-Galactic (?). Heavy Nuclei. Source?. Light Nuclei?. Lighter.
E N D
What do we know about theidentity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL
The cosmic-ray spectrum & Composition log [dJ/dE] E-2.7 Galactic Protons E-3 Source: Supernovae(?) X-Galactic (?) Heavy Nuclei Source? Light Nuclei? Lighter Source? 1 1010 106 Cosmic-ray E [GeV] [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]
Intra-cluster CRs • Observed in radio, HXR • Will not be discussed here • See D. Kushnir’s talk: [arXiv:0903.2271, 0903.2275, 0905.1950] * Likely origin- Accretion shocks * Predictions for Fermi, TeV (HESS, MAGIC)
Galactic CR sources: Constraints • Max e>~1015eV • Energy production rate LG,CR~(AdiskhCR)UCR/tCR * UCR~1 eV/cm3, * Propagation: 2nd-ary (& primary) composition LG,CR~cAdiskUCR(Sdisk/Ssec)~1049.5erg/100yr [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94]
Galactic CR sources: SNe? • Motivation for SNe as sources: * LG,CR~10-1.5LG,SN * Max e~1015eV * e- acceleration to 1015eV from X emission • TeV photons from SNRs (RXJ1713.7-3946,RXJ0852.0-4622) * Claim: must be due to pp pion production Confirms CR ion production [e.g. Koyama et al. 95] [e.g. Aharonian et al. 04--07]
TeV must be due to e- IC • ppp origin in contradiction with radio, thermal-X (non detection of thermal X n<~0.1/cm3): • TeV consistent with e- IC, including “cutoffs”: • Claims RE e- IC inconsistency: Detailed spectral shape near hnc, where theoretical predictions are highly uncertain [Katz & Waxman 07]
SNR TeV lessons • Search at high n SNRs: Strong Thermal X, weak non-Thermal • Difficult to prove pp based on EM obs. Highly simplified, phenomenological models (and plenty of room for complications: inhomogeneous plasma, particle spectra…) [Katz & Waxman 07]
PAMELA: New e+ sources? • Apply anti-p, e+ consistent with 2ndary origin • Radiative e+ losses- depend on propagation in Galaxy (poorly understood) * At 20GeV: frad~0.3~f10Be * Above 20GeV: If PAMELA correct slightly rising frad(e) [Katz, Blum & Waxman 09]
What do we know about >1019eV CRs? [Waxman 95, 04] • Max e: LB>1012 (G2/b) (e/Z 1020eV)2 Lsun (see Dermer’s talk) • Composition
Composition clues HiRes 2005
What do we know about >1019eV CRs? • Max e: LB>1012 (G2/b) (e/Z 1020eV)2 Lsun • Composition: HiRes –protons, Auger- becoming heavier @ 3x1019eV? !!Uncertain interaction cross sections • Energy production rate: - LB>1012 Lsun & RL=e/eB=40ep,20kpc Likely X-Galactic
Flux & Spectrum • e2(dN/de)=e2(dQ/de) teff. (teff. : p + gCMB N +p) • Assume: p, dQ/de~(1+z)me-a log(e2dQ/de) [erg/Mpc2 yr] cteff [Mpc] GZK (CMB) suppression • >1019.3eV: consistent with • protons, e2(dQ/de) ~1043.7 erg/Mpc3 yr + GZK • e2(dQ/de) ~Const.: Consistent with shock acceleration [Katz & Waxman 09] [Waxman 1995; Bahcall & Waxman 03] [Reviews: Blandford & Eichler 87; Waxman 06 cf. Lemoine & Revenu 06]
G-XG Transition at 1018eV? Inconsistent spectrum Fine tuning [Katz & Waxman 09]
What do we know about >1019eV CRs? • Max e: LB>1012 (G2/b) (e/Z 1020eV)2 Lsun • Composition HiRes –protons, Auger- becoming heavier Uncertain interaction cross sections • Energy production rate - LB>1012 Lsun & RL=e/eB=40ep,20kpc Likely X-Galactic - Consistent with protons, e2(dQ/de) ~1043.7 erg/Mpc3 yr + GZK
UHE CR sources • Constraints:- L>1012 (G2/b) Lsun • - e2(dQ/de) ~1043.7 erg/Mpc3 yr • - d(1020eV)<dGZK~100Mpc • !! No L>1012 Lsun at d<dGZK Transient Sources • Gamma-ray Bursts (GRBs) • G~ 102.5, Lg~ 1019LSun L/G2 >1012 Lsun • (dn/dVdt)*E~10-9.5 /Mpc3 yr *1053.5erg ~1044 erg/Mpc3 yr • Transient: DTg~10s << DTpg ~105 yr • Active Galactic Nuclei (AGN, Steady): • G~ 101 L>1014 LSun=few brightest • !! Non at d<dGZK Invoke: • * “Dark” (proton only) AGN • * L~ 1014 LSun , Dt~1month flares • (from stellar disruptions) [Waxman 95, Vietri 95, Milgrom & Usov 95] [Waxman 95] [Blandford 76; Lovelace 76] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]
Anisotropy Biased (rsource~rgal for rgal>rgal ) • Cross-correlation signal: Inconsistent with isotropy @ 98% CL (~1.5s) Consistent with LSS • If anisotropy signal real & no anisotropy at 60EeV/(Z~10) primaries must be protons See M. Lemoine’s talk [arXiv:0907.1354] [Kashti & Waxman 08]
The GRB “GZK sphere” g p • LSS filaments: D~1Mpc, fV~0.1, n~10-6cm-3, T~0.1keV eB=(B2/8p)/nT~0.01 (B~0.01mG), lB~10kpc • Prediction: D lB [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]
Summary • Galactic e<1015eV (<1019eV) - LG,CR~10-1.5LG,SN & Max e~1015eV (1019eV) suggest SNR (trans-rel. SN) sources - TeV from low n, non-thermal X SNR: e- IC - Search for pp in high n, strong thermal X SNR pp:IC[@1GeV]~3 (n/1cm3) * Anti-p, e+ data consistent with 2ndary origin Prediction: e+/(e++ e-)<0.2+-0.1 up to ~300GeV PAMELA slightly rising frad(e) [constrain CR prop. Models] • X-Galactic e>1019eV - Likely protons, e2(dQ/de) ~1043.7 erg/Mpc3 yr, LB>1012 Lsun suggest: GRBs [AGN flares?] - Anisotropy constrains primary composition • Difficult to uniquely identify sources via EM observations Search for HE n’s
X-ray filaments • Claim: X-ray filaments require B>100mG, much larger than required for IC explanation of TeV emission (B~10mG). • Claim based on the assumption: Filaments due to e- cooling (vs, e.g., B variations). * No independent support to this assumption; * X-ray & RADIO filaments (Tycho, SN2006) inconsistent with this assumption.
What is the e+ excess claim based on? • On assumptions not supported by data/theory * primary e- & p produced with the same spectrum, and e- and e+ suffer same frad e+/e-~Ssec~e-0.5 Or * detailed assumptions RE CR propagation, e.g. isotropic diffusion, D~ed, within an e-independent box frad ~e(d-1)/2 • If PAMELA correct, these assumptions are wrong
(Correct) detailed CR propagation models must agree with simple, analytic results derived from Ssec • Example: Diffusion models with {D~K0ed, box height L} reproduce data for parameter combinations shown in fig. [Maurin et al. 01] • Trivial explanation: • [Katz, Blum & Waxman 09] • Require • Ssec(e =35GeV) • to agree with the value inferred from B/C • Ssec =[3.2,3.45,3.9] g/cm2 • [green, blue, red]
The 1020eV challenge v R B /G v G2 G2 2R l =R/G (dtRF=R/Gc) [Waxman 95, 04, Norman et al. 95]
Anisotropy clues: I CR intensity map (rsource~rgal) Galaxy density integrated to 75Mpc • Auger collaboration: Correlation with low-luminosity AGN @ 99% AGN? • AGN trace LSS Correlation with large-scale structure? • Unfortunately… Unclear. [Waxman, Fisher & Piran 1997]
Electrons MeV g’s: tgg<1: e- (g) spectrum: e- (g)energy production Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production: GRB proton/electron acceleration 52 Afterglow, RGRB~SFR [Waxman 95, 04]
GRB Model Predictions [Miralda-Escude & Waxman 96]