340 likes | 486 Views
Model Checking Lecture 5. Outline. 1 Specifications: logic vs. automata, linear vs. branching, safety vs. liveness 2 Graph algorithms for model checking Symbolic algorithms for model checking Pushdown systems. From Finite to Inifinite-State Systems.
E N D
Model Checking Lecture 5
Outline • 1 Specifications: logic vs. automata, linear vs. branching, safety vs. liveness • 2 Graph algorithms for model checking • Symbolic algorithms for model checking • Pushdown systems
From Finite to Inifinite-State Systems • So far, algorithms for systems with finite state spaces • Sources of infinite-state • Control: recursion • Data: unbounded numeric variables, lists • Time: Systems with real-time clocks • Parameters: arbitrary number of participating processes
From Finite to Inifinite-State Systems • So far, algorithms for systems with finite state spaces • Sources of infinite-state • Control: recursion • Data: unbounded numeric variables, lists • Time: Systems with real-time clocks • Parameters: arbitrary number of participating processes
Decidability vs. Expressiveness • Unbounded state Undecidable • Is the unbounded system able to encode a Turing machine? • Single-counter machines? NO • Two-counter machines? YES • Single-stack machines? NO • Two-stack machines? YES
From Finite to Inifinite-State Systems • So far, algorithms for systems with finite state spaces • Sources of infinite-state • Control: recursion • Data: unbounded numeric variables, lists • Time: Systems with real-time clocks • Parameters: arbitrary number of participating processes
State representation • Explicit representation infeasible • Symbolic representation is the key • For the transition system • For the reachable states
Pushdown systems (G, L, g0, l0, ) g, h G : finite set of control states l, m L : finite set of stack symbols g0 : initial control state l0 : initial stack symbol : set of transitions
g, Three kinds of transitions: (g, l) (h, m) (step) (g, l) (h, m n) (call) (g, l) (h, ) (return) Configuration: l h, m n g, l m g, h, l g, h, l
Modeling sequential programs • An element in G is a valuation to global variables • An element in L is a valuation to local variables and • current instruction address for the frame at the top of the stack • return instruction address for the other frames
Example bool a = F; void main( ) { L1: a = T; L2: flip(a); L3: } void flip(bool x) { L4: a = !x; L5: } (a, x, pc) (F, _, L1) (T, _, L2) (T, _, L3 T, L4) (F, _, L3 T, L5) (F, _, L3) (F, )
Reachability problem Given pushdown system (G, L, g0, l0, ) and control state g, does there exist a stack ls L* such that (g0, l0) * (g, ls)?
Naïve algorithm Add (g0, l0) to R (g, ls) R (g, ls) (g’, ls’) Add (g’, ls’) to R
Problem with the naïve algorithm • R is unbounded so algorithm won’t terminate • Two solutions: • Summary-based (a.k.a. interprocedural dataflow analysis) • Automata-based
Algorithm I E(g, l, h, m) (step edges) E+(g, l, h, nm) (call edges) E-(g, l, h) (pop edges) Initially: E(g0, l0, g0, l0) E+ is empty E- is empty
Step rule E(g, l, h, m) (h, m) (h’, m’) E(g, l, h’, m’)
Call rule E(g, l, h, m) (h, m) (h’, n’m’) E+(g, l, h’, n’m’) E(h’, n’, h’, n’)
Return rule E(g, l, h, m) (h, m) (h’, ) E-(g, l, h’)
Summary rule E+(g, l, h, nm) E-(h, n, h’) E(g, l, h’, m)
E+(0, L0, 0, L4·L1) E(0, L4, 0, L4) E(0, L4, 1, L5) E-(0, L4, 1) E(0, L0, 1, L1) E(0, L0, 0, L2) E+(0, L0, 0, L4·L3) E(0, L0, 1, L3) E-(0, L0, 1) E(0, L0, 0, L0) int g = 0 main() { L0: incr() L1: g = 0 L2: incr() L3: } incr() { L4: g = g+1 L5: }
E(0, L0, 0, L1) E(0, L5,0, 0, L5,0) E+(0, L0, 0, L5,0·L3) E(0, L5,0, 0, L6,0) E+(0, L5,0, 0, L5,0·L8,0) E(0, L0, 0, L2) E(0, L5,1, 0, L5,1) E+(0, L0, 0, L5,1·L3) E(0, L5,1, 0, L7,1) E(0, L5,1, 1, L8,1) E-(0, L5,1, 1) E(0, L0, 1, L3) E(0, L0, 1, L4) E-(0, L0, 1) E(0, L0, 0, L0) int g = 0 main() { L0: if (*) L1: foo(0) else L2: foo(1) L3: assert(g > 0) L4: } foo(r) { L5: if (r = 0) L6: foo(r) else L7: g = g + 1 L8: }
Reachability problem Given pushdown system (G, L, g0, l0, ) and control state g, does there exist a stack ls such that (g0, l0) * (g, ls)? Algorithm I: Summary-based Yes, if E(g’, l’, g, l) for some g’, l’, and l. No, otherwise.
Algorithm II Add (g0, l0) to R (g, ls) R (g, ls) (g’, ls’) Add (g’, ls’) to R Key idea: Use a finite automaton to symbolically represent R
Symbolic representation • Pushdown system (G, L, g0, l0, ) • Representation automaton (Q, L, T, G, F) • Q ( G) is the set of states • L is the alphabet • T is the transition relation • G is the set of initial states • F is the set of final states
m l l s2 g s1 m h Represents the set of configurations: { (h, m), (g, l m* l) } A set C of configurations is regular if it is representable by an automaton Theorem (Buchi) : The set of configurations reachable from a regular set is also regular.
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0 g1 g2
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0 l1 g1 s1,1 l2 g2 s2,2
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0 l0 l1 g1 s1,1 l2 g2 s2,2
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0 l0 l1 g1 s1,1 l0 l2 g2 s2,2
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0 l0 l1 l1 g1 s1,1 l0 l2 g2 s2,2
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0 l0 l1 l1 g1 s1,1 l0 l2 g2 s2,2
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0 l0 l1 l1 g1 s1,1 l0 l0 l2 g2 s2,2
Pushdown system: (G, L, g0, l0, ) - G = {g0,g1,g2} - L = {l0,l1,l2} - (g0, l0) (g1, l1l0) (g1, l1) (g2, l2l0) (g2, l2) (g0, l1) (g0, l1) (g0, ) l0 g0 s0 l0 l1 l1 g1 s1,1 l0 l0 l2 g2 s2,2 { (g0, l0 l0l0+ l1l0l0+), (g1,l1l0+), (g2,l2l0l0+) }