180 likes | 332 Views
TRI P T rapped R adioactive I sotopes: -laboratories for fundamental P hysics. Facility to produce AGOR select separator collect hold traps manipulate radioactive nuclei, To study physics beyond the Standard Model. . TRI P. Content. Motivation
E N D
TRIPTrapped Radioactive Isotopes:-laboratories for fundamental Physics • Facility to • produce AGOR • select separator • collect • hold traps • manipulate • radioactive nuclei, • To study physics beyond the Standard Model TRIP
Content • Motivation • Status of the project • Production philosophy • Production gas-cell issues • Progress in MOT’s @ KVI • Summary TRIP
Physics beyond the Standard Modelcharged currents violations in the light quark sector (N,Z) (N-1,Z+1) W±,? e- TRIP
Why traps? Maximal experimental control TRIP
Physics beyond the Standard Modelneutral currents violations in the light quark sector (N,Z) (N,Z) Study of Parity Non-Conserving atomic transitions Qw Time Reversal Violation new interactions ,Z0,? e- e- Why radioactive atoms? Scales with Z5 Fr, Ra isotopic dependence TRIP
Creating a facility nuclear physicsparticle physics atomic physics TRIP
Fundamental Interactions Nuclear physics Atomic physics Applied physics Physics of rare ions & atoms in traps -decay condensates Nuclear structure - and -decay Atomic moments Electric dipole Atomic structure chemistry Nuclear moments very rare isotope detection TRIP
Current status of project • Funding from FOM and RuG + Apparatus 3.5 M€ + Program funding until 2013 • New research group + group leader Klaus Jungman • + (RF/MOT) Lorenz Willmann • + (Magnetic systems) Georg Berg (temp) • + R. Hoekstra, R. Morgenstern, H.W. • + (…) Peter Dendooven • European frameworks • + NIPNET (KVI) • + Gascatcher (LMU) • + HITRAP (GSI) • + BETANET (Leuven) (submitted to EU) TRIP
Combine recoil separator with fragment separator Recoil separator QQDDQQ D = 33° upstream QQDQDQ = 35 mrad fragment separator B 3 Tm + Preliminary magnetic separator target 2 gas cell target 1 TRIP
Production method • Inverse reaction kinematics + Separation production and selection site + Kinematical focus of products – Separation beam and product – Power limit beam • Fusion reactions (Fr, Ra neutral weak) + Strong focus, selective – fission competition – neutron deficient • (Semi) direct reactions on p or d (charged weak)+ “large” cross sections – close to projectile (light Z only) • Fragmentation (charged weak) + thick targets + any fragment – non selective, small yields TRIP
Production example for Gas-filled separator calculations for 12C + Pb Ra + 5n (typical) beam energy = 7.0 ± 0.7 MeV/nucleon, residue 50 mb 12C beam: rate 106/s/kW limit: beam power (~1 kW) residue stopping (0.2 mg/cm2) bad separator transmission Pb beam: rate 107/s/kW limit: beam power (1 kW) (2 mg/cm2) Inverse reaction favored (gas filling essential) TRIP
Simulation of gas-filled separator calculations for 12C + Pb Ra + 5n (typical) simulation program M. Paul et al. NIM A277(89)418 (Argonne) D=200 cm separation grows from = 1.9% to 10.8% in 5 torr of Argon gas filling is essential TRIP
Example:production via direct reaction Reaction (product-beam) window rate d(20Ne,21Na)n > 7 % <13% 50mb 109/s/kW p(20Ne,20Na)n >10% <7% 5mb 108/s/kW criterion for target thickness: =1% differential stopping in target e.g. 3.5 mg/cm2 (D2) • well focused large yields • separation beam sufficient? • lifetime target windows? TRIP
Fragmentation Gas catcher recoil separator vs. fragment separator = 1 step vs 2 step separation Used LISE to optimize target and wedge thickness • Fragment magnetic selection wedge selection factor • (rates/s/kW) (typical 50% loss) • 36Ar - 4n 40 AMeV 103 of 107 10 • 32Ar 70 AMeV 104 of 4.107 of 1.5 106 ~10 • 40Ar - 4p 40 AMeV 103 of 107 of 6.0 103 ~100 • 36Si 70 AMeV 104 of 107 of 2.0 103 >100 • 2nd separation for proton rich is poor • Gas catcher with 108/s recoil separator • (what about stray beam?) TRIP
Production and Gas-cell size Consider 1 bar He; momentum bite determines size product residual energy dz/%dE length Ra 5 MeV/u 3 mm 4 mm 21Na 10 MeV/u 7 mm 7 cm 36Si 40 MeV/u 35 cm 3.5 m Current number 108/s in 0.5 bar He is marginal Experimental values necessary TRIP
MOT’s @ KVI (atomic physics) RIMS: Recoils 100 meV (PRL to be published) TRIP
MOT’s @ KVI (atomic physics) Trace analysis (41)Ca isotopes (being installed) TRIP
Summary • TRIP on track • Facility concepts developed now • Completion in 2005 • Atomic physics well ahead • Need graduate students: join us • Collaborations: exploit us TRIP