1 / 6

Física Geral e Experimental I Prof. Ms . Alysson Cristiano Beneti

Instituto Tecnológico do Sudoeste Paulista Faculdade de Engenharia Elétrica – FEE Bacharelado em Engenharia Elétrica. Física Geral e Experimental I Prof. Ms . Alysson Cristiano Beneti. Aula 11 Aplicações das Leis de Newton. IPAUSSU-SP 2012.

quant
Download Presentation

Física Geral e Experimental I Prof. Ms . Alysson Cristiano Beneti

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Instituto Tecnológico do Sudoeste Paulista Faculdade de Engenharia Elétrica – FEE Bacharelado em Engenharia Elétrica Física Geral e Experimental I Prof. Ms. Alysson Cristiano Beneti Aula 11 Aplicações das Leis de Newton IPAUSSU-SP 2012

  2. A Grande Pirâmide, construída há cerca de 4500 anos, é formada por 2300000 blocos de pedra, a maioria com massa de 2 a 3 toneladas. Como os engenheiros e operários conseguiram levantar as pedras para construir a pirâmide, que tem mais de 140m de altura? Alguns pesquisadores levantaram a hipótese de que, durante a construção, uma turma de operários fazia subir os blocos por uma gigantesca rampa de terra de pequena inclinação, encostada em um dos lados da pirâmide. Entretanto, não existem indícios que apóiem esta teoria. Acontece que uma rampa deste tipo seria altamente instavel; além disso, conseguir com que blocos de pedra de 2ton fizessem curvas de 90 nos cantos da pirâmide parece uma tarefa extremamente difícil, se não impossível. Como os antigos egípicios levantavam os gigantescos blocos de pedra?

  3. As Leis de Newton Estudaremos os três tipos de força: atrito, arrasto e centrípeta. Em um projeto de um carro, um engenheiro deve levar em conta os três tipos de força, pois as forças de atrito que agem sobre os pneus são importantes na aceleração e nas curvas. As forças de arrasto produzidas pelas correntes de ar devem ser minimizadas. As forças centrípetas são fundamentais nas curvas, pois o carro pode derrapar.

  4. Força de Atrito ( f ) São forças inevitáveis em nosso cotidiano. Aproximadamente 20% da gasolina consumida por um automóvel são usados para compensar o atrito das peças do motor e da transmissão. Por outro lado se não houvesse atrito não poderíamos caminhar (empurrar o solo para trás para irmos para frente), nadar (empurrar a água para trás para irmos para frente) ou voar com um avião (empurrar o ar para trás para irmos para frente).

  5. Força de Atrito ( f ) A força de atrito estática (fs) é a força que surge em resposta à tentativa de deslocar um corpo que está em contato com uma superfície, em repouso. A força de atrito dinâmica (fk) é a força que surge em resposta à tentativa de deslocar um corpo que está em contato com uma superfície, em movimento. Coeficiente de Atrito Estático Força Normal à Superfície Unidade de Força: Kg.m/s2 N (Newton) Coeficiente de Atrito Dinâmico

  6. (Halliday, p. 129) Se as rodas de um carro ficam “travadas” durante uma frenagem de emergência, o carro desliza na pista. Pedaços de borracha arrancados dos pneus e pequenos trechos do asfalto fundido formam as “marcas de derrapagem” que revelam a ocorrencia de soldagem a frio. O recorde de marca de derrapagem em via pública foi estabelecido em 1960 pelo motorista de um Jaguar na rodovia M1, na Inglaterra: as marcas tinham 290m de comprimento. Supondo que k=0,60 e que a aceleração do carro se manteve constante durante a frenagem, qual era a velocidade do carro quando as rodas travaram?

More Related