570 likes | 647 Views
Capturing knowledge about the instances behaviour in probabilistic domains. Sergio Jiménez Celorrio, Fernando Fernández, Daniel Borrajo Departamento de Informática Universidad Carlos III de Madrid. Outline. Motivation The System Experiments Conclusions. Motivation.
E N D
Capturing knowledge about the instances behaviour in probabilistic domains Sergio Jiménez Celorrio, Fernando Fernández, Daniel Borrajo Departamento de Informática Universidad Carlos III de Madrid
Outline • Motivation • The System • Experiments • Conclusions
Motivation • Planning in Probabilistic domains
Motivation • Planning in Probabilistic domains • Without having a Probabilistic representation of the domain
Motivation • Planning in Probabilistic domains • Without having a Probabilistic representation of the domain • Acquiring Probabilistic Information automatically • Repeating cycles of planning, execution and learning
Motivation • Planning in Probabilistic domains • Without having a Probabilistic representation of the domain • Acquiring Probabilistic Information automatically • Repeating cycles of planning, execution and learning • Using the Probabilistic Information • Generating Control Knowledge
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (a1) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (s1) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture State1 Pick-up C B A
The Planning Execution Learning Architecture State1 State2 Pick-up C success C B B A A
The Planning Execution Learning Architecture State1 Pick-up C B A
The Planning Execution Learning Architecture State1 State2 Pick-up failure C B B C A A
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
Updating The Robustness Table pick-up-block-from (block0 block1) - Success
Updating The Robustness Table pick-up-block-from (block0 block1) - Success
Updating The Robustness Table pick-up-block-from (block0 block1) - Success
Updating The Robustness Table pick-up-block-from (block0 block1) - Failure
Updating The Robustness Table pick-up-block-from (block0 block1) - Failure
Updating The Robustness Table pick-up-block-from (block0 block1) - Failure
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Planning Execution Learning Architecture Plan Executor Action (ai) Deterministic Domain Real World IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Control Knowledge Update Learning Robustness Table
The Control Knowledge (control-rule prefer-operator-for-holding (if (and (current-goal (holding <robot> <block>)) (candidate-operator <op1>) (candidate-operator <op2>) (robustness-op-more-than <op1> <op2>))) (then prefer operator <op1> <op2>))
The Control Knowledge (control-rule prefer-bindings-for-put-down-block-on-for-on-top-of (if (and (current-goal (on-top-of <block-1> <object-1>)) (current-operator put-down-block-on) (candidate-bindings ((<robot> . <robot-1>) (<top> . <block-1>) (<bottom> . <object-1>))) (candidate-bindings ((<robot> . <robot-2>) (<top> . <block-1>) (<bottom> . <object-1>))) (robustness-bindings-more-than put-down-block-on1 ((<robot> . <robot-1>) (<top> . <block-1>) (<bottom> . <object-1>)) ((<robot> . <robot-2>) (<top> . <block-1>) (<bottom> . <object-1>))))) (then prefer bindings ((<robot> . <robot-1>) (<top> . <block-1>) (<bottom> . <object-1>)) ((<robot> . <robot-2>) (<top> . <block-1>) (<bottom> . <object-1>))))
The Experiments Probabilistic Domain Action (ai) IPC4-Simulator State (si)
The Experiments Probabilistic Domain Action (ai) IPC4-Simulator State (si)
The Experiments Probabilistic Domain Action (ai) IPC4-Simulator State (si)
The Experiments Probabilistic Domain Action (ai) IPC4-Simulator State (si)
The Experiments Probabilistic Domain Plan Executor Action (ai) Deterministic Domain IPC4-Simulator IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Update Learning Robustness Table
The Experiments Probabilistic Domain Plan Executor Action (ai) Deterministic Domain IPC4-Simulator IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Update Learning Robustness Table
The Experiments C A B
The Experiments Probabilistic Domain Plan Executor Action (ai) Deterministic Domain IPC4-Simulator IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Update Learning Robustness Table
The Experiments Probabilistic Domain Plan Executor Action (ai) Deterministic Domain IPC4-Simulator IPSS Planner (a1,a2,..,an) State (si) New problem Problem Execution Information (ai,si,s’i,gi) Update Learning Robustness Table
The Experiments • 5 blocks • 8 blocks • 11 blocks
The Experiments • 5 blocks • 8 blocks • 11 blocks
Conclusions • Current Work • Capturing instances probabilistic behaviour • Generating Control Knowledge
Conclusions • Current Work • Capturing instances probabilistic behaviour • Generating Control Knowledge • Future Work • Capturing State dependant behaviour • Generating State dependant Control Knowledge
State Dependant Control Knowledge (control-rule prefer-operator-for-holding (if (and (current-goal (holding <robot> <block>)) (true-in-state (<state>)) (candidate-operator <op1>) (candidate-operator <op2>) (robustness-op-more-than <state><op1> <op2>))) (then prefer operator <op1> <op2>))
Conclusions • Current Work • Capturing instances probabilistic behaviour • Generating Control Knowledge • Future Work • Capturing State dependant behaviour • Generating State dependant Control Knowledge • Escalation Problem • Robustness Table Size