E N D
1. TMT.AOS.PRE.05.047.REL03 1 NFIRAOS Facility AO for the Thirty Meter Telescope
TMT Week Presentation September 2005
Glen Herriota et al.
aNRC-HIA
2. TMT.AOS.PRE.05.047.REL03 2 NFIRAOS side view
3. TMT.AOS.PRE.05.047.REL03 3 Outline of Talk a. Requirementsb. Design descriptionc. Trade studies, options, technical issues, plan for resolution
d. Performance of designe. Work plan and schedule to CoDR (May 2006) and Cost Review (Sept 2006)f. Cost targets discussion
4. TMT.AOS.PRE.05.047.REL03 4 NEFARIOUS purposes NFIRAOS is pronounced “nefarious”
Narrrow-field, InfraRed Adaptive Optics System
SRD REQUIREMENTS:
Facility Laser Guide star AO system feeding three near infrared instruments 0.8 – 5 mm (goal 0.6 – 5 mm)
50% sky coverage at galactic pole
133 nm rms wavefront error over 30 arcsecond field
95% throughput
NFIRAOS must increase background < 15% vs sky + telescope
Part of larger TMT AO program. cf Ellerbroek presentation.
5. TMT.AOS.PRE.05.047.REL03 5 NFIRAOS feeds three Instruments IRIS Integral Field Unit Near IR Spectrograph 1.0 – 2.5 µm, specified to have 2” IFU and 10”x10” imager
NIRES Near infrared Echelle Spectrograph 1 – 5 µm, high spectral resolution, narrow field.
WIRC Wide field ( 30”) infrared camera, 1 – 5 µm
6. TMT.AOS.PRE.05.047.REL03 6 NFIRAOS on Nasmyth
7. TMT.AOS.PRE.05.047.REL03 7
8. TMT.AOS.PRE.05.047.REL03 8 Baseline & Upgrade At first light, 133 nm wavefront error over a 30 arcsecond field is judged to be too ambitious and risky.
Baseline NFIRAOS has 60x60 actuators on each of 2 DMs, 5 mm pitch, 9 micron stroke, correcting a 10 arcsecond field of view, with relaxed error budget.
NFIRAOS will later be upgraded with
More actuators on DM conjugate to 0 km (120x120)
2.5 mm pitch, but reduced stroke.
4x More subapertures on LGS WFS
4x Laser power vs. ~100 - 150 W baseline (2 or 3 lasers)
Adaptive Secondary mirror as “woofer” giving more stroke.
9. TMT.AOS.PRE.05.047.REL03 9 Baseline configuration
10. TMT.AOS.PRE.05.047.REL03 10 Upgrade configuration
11. TMT.AOS.PRE.05.047.REL03 11 Risk avoidance NFIRAOS will minimize dependence on unproven AO component technologies.
It will operate with currently demonstrated laser pulse formats.
Piezo stack deformable mirrors with actuator stroke and density similar to existing mirrors
NGS and LGS detectors that are minimal extrapolations from current technology in terms of read noise, number of pixels and read rates.
Plan to use radial format CCD with 4x16 pixel subarrays aligned with each subaperture’s elongated spot.
12. TMT.AOS.PRE.05.047.REL03 12 Subsystem Decomposition
13. TMT.AOS.PRE.05.047.REL03 13 Subsystem Decomposition Bench
Cold Enclosure
“Table”
Optomechanics
Components Control
Electronics
Software
Electrical Enclosure
Tip/Tilt Platform
Deformable Mirrors
Mirrors
Drive Electronics & Power Supplies
14. TMT.AOS.PRE.05.047.REL03 14 Science Optics Path
15. TMT.AOS.PRE.05.047.REL03 15 NFIRAOS on Nasmyth
16. TMT.AOS.PRE.05.047.REL03 16 Interfaces to Instruments Interface is mounting surface for Instrument’s rotary bearing
~ 1 meter back focal distance for each
Identical optical feed & mechanical interface on all three ports
Two vertical-axis ports for IRIS, NIRES
Constant gravity environment
One horizontal-axis port for WIRC
External Rotation bearing or internal rotating pupil relay
Instruments responsible for
NGS tip/tilt/focus sensing
Field derotation bearings (if any)
Atmospheric dispersion compensation (if any)
Cable wraps (if instrument rotates)
17. TMT.AOS.PRE.05.047.REL03 17 Back Focal Dist (BFD)
All 3 ports same
500 mm [past mounting face] (all 3 ports)
250-500 mm “snouts” may be allowed on all ports
1 m total
18. TMT.AOS.PRE.05.047.REL03 18 Lower Instrument in hole on Nasmyth
19. TMT.AOS.PRE.05.047.REL03 19 Volume: 8.2 x 4.2 x 2.5 meters
Incoming optic axis 2 m above Nasmyth
Outgoing optic axis (downward) Focuses at Nasmyth elevation
Mass: (very preliminary estimates)
NFIRAOS: 10 – 15 tonnes
WIRC: 10 tonnes
IRIS: 4 tonnes
NIRES: 8 tonnes
20. TMT.AOS.PRE.05.047.REL03 20 Natural Guide Star IR WFSs in instruments All client instruments will have choice of Near-Infrared Natural star WFSs
Either 3 tip/tilt NIR sensors (likely best performance, but less convenient)
Or a single 2x2 tip/tilt/focus/astigmatism sensor (may confuse variable Sodium Altitude with plate scale)
Fed by a 2 arcminute “technical field”, image sharpened by MCAO operation giving Strehl > 0.1 over technical field.
21. TMT.AOS.PRE.05.047.REL03 21 Instrument interface trades studies Feeding instruments via large positive back focal distance
Reducing footprint on Nasmyth (hole in floor)
Field Rotation
Reducing emissivity (K mirror studies.)
Constant gravity vector for >1 instrument
Truth WFS and Acquisition camera in NFIRAOS not instruments.
NGS TTF sensors ok on-axis.
IR NGS WFS in instrument vs. visible TT WFSs in NFIRAOS
Horizontal vs vertical Bench
Trolleys
22. TMT.AOS.PRE.05.047.REL03 22
23. TMT.AOS.PRE.05.047.REL03 23 High Order Error Budget
24. TMT.AOS.PRE.05.047.REL03 24 Error Budget summaries: telescope residual = SRD spec or RFP spec
25. TMT.AOS.PRE.05.047.REL03 25 Tip – Tilt Error budget
26. TMT.AOS.PRE.05.047.REL03 26 Error Budget Supporting work uncorrectable telescope aberrations
LGS asterism selection
tip/tilt correction
Range to the Na Layer
LGS WFS linearity, bias, and sensitivity to noise
NCPA calibration (non-common-path aberration)
Altitude of conjugation trade study ? DM @ h= 12 km
Note that the tip/tilt error budgets are based upon sky coverage simulations
27. TMT.AOS.PRE.05.047.REL03 27 Sky Coverage Calculated by Richard Clare, TMT.
Includes servo lag (sample rate and tip-tilt mirror performance), photon noise, read noise, windshake, turbulence
Spagna sky model, J-band stellar density
image sharpened IR NGS WFS
Still to include: tradeoff with Na altitude focusing.
28. TMT.AOS.PRE.05.047.REL03 28 Defeating Windshake with DM/TT woofer-tweeter
29. TMT.AOS.PRE.05.047.REL03 29 Sodium Range Focusing Temporal Errors Time History of Sodium Altitude, and power spectrum.
Residual WFE ~46 nm rms = f(Natural GS sky coverage)
Wide variability among 3 nights’ data so far.
30. TMT.AOS.PRE.05.047.REL03 30 Non-Common-Path (NCP) Error Budget
31. TMT.AOS.PRE.05.047.REL03 31
32. TMT.AOS.PRE.05.047.REL03 32 Optical Design of LGS WFS
33. TMT.AOS.PRE.05.047.REL03 33 Radial CCD Pixel Geometry for Laser Guidestars
34. TMT.AOS.PRE.05.047.REL03 34 LGS Spot Elongation mitigation Luc Gilles’ matched filter simulations. Right figure is systematic error using “Old” sodium layer profile, with respect to a perfectly linear transfer function between Wavefront Tilt and Measurement.
35. TMT.AOS.PRE.05.047.REL03 35 LGS WFS simulation parameters include 0.5 arc second pixels,
0 or 5 read noise electrons,
1000 photodetection events per subaperture
a 30 cm laser beam
projected from a 50 cm launch telescope,
50 cm LGS WFS subapertures.
36. TMT.AOS.PRE.05.047.REL03 36 Number of LGSs
37. TMT.AOS.PRE.05.047.REL03 37 Emissivity & Throughput Top Level Science requirement on added background.
NFIRAOS must increase background < 15% compared with sky and bare 3-mirror TMT telescope, assumed to be at 0 Celsius.
Given the estimated emissivity of NFIRAOS optics and entrance window..
NFIRAOS temperature must be about -33 Celsius.
38. TMT.AOS.PRE.05.047.REL03 38
39. TMT.AOS.PRE.05.047.REL03 39 Intimate connections with Observatory Control ensure observing efficiency
40. TMT.AOS.PRE.05.047.REL03 40 AO Sequencer Diagrams Corrine Boyer’s sequence of events to make it all run smoothly
41. TMT.AOS.PRE.05.047.REL03 41 Important Dates TMT
“TMT Week:” September 26-30, 2005
Conceptual Design Review: May 8-12, 2006
NFIRAOS Study
May 26, 2005 Kickoff meeting
July 15, 2005 Draft Initial OCDD and FPRD
Aug 02, 2005 Interim Review
Aug 26, 2005 Interim Review Response
Sept 23, 2005 Initial OCDD and FPRD
Oct 18, 2005 Conceptual Design Report Outline
Nov 9, 2005 Mid-Course Review
Feb 1, 2006 Conceptual Design Report and Management Plan
Mar 1, 2006 Conceptual Design Review
Apr 14, 2006 Revised Design Report and Management Plan
42. TMT.AOS.PRE.05.047.REL03 42
43. TMT.AOS.PRE.05.047.REL03 43 Workscope Schedule Optomech, Interfaces, S/W, Modeling
44. TMT.AOS.PRE.05.047.REL03 44 Cost Targets by WBS – construction phase. WBS cost targets $K
Does not include Preliminary Design during DDP
Preliminary design burn rate estimated at 3 FTE for 1.6 years ~$500K
45. TMT.AOS.PRE.05.047.REL03 45 Key Tasks During PDR phase: 1. Detailing interfaces with the Nasmyth platform, instruments, and control systems
2. Detailing interfaces and requirements for components including LGS WFS detectors, deformable mirrors, and the RTC
3. Design and analysis of key components/aspects of the system where cost/technical risk remain, including: the LGS WFS, coatings, FEA analysis of flexure and thermal effects, etc.
4. A more typical PDR level of design for the remainder of NFIRAOS—finding the right balance will be important.
46. TMT.AOS.PRE.05.047.REL03 46 Outstanding TMT-wide issues impacting NFIRAOS
Quantitative SRD requirement for “near diffraction limited performance” for 50% sky coverage needed.
Need SRD requirements for NFIRAOS NGS WFS mode (e.g. guide star wavelength, sky coverage probability, image quality)
Need observatory Operational Concepts document OCDD
Need Defined standards for TMT environmental conditions
Wavelength, flat field and spectral line calibrators
More detailed Telescope wavefront error budget (especially temporal & spatial power spectra of dephasing, pointing, focusing)
… in particular, a credible windshake model is vital
47. TMT.AOS.PRE.05.047.REL03 47 Outstanding Issues Print-through of mirror supports, and edge discontinuities aliasing into WFS.
Much more data needed on temporal variability of sodium layer structure, altitude, density.
Much more data needed on winds aloft, (temporal frequencies of turbulence.)
SRD throughput requirement is nearly impossible (95% spec. vs expected 79%)
Space on Nasmyth needed by NFIRAOS approaches elevation axis ( David C.’s layout omits instrument supports and service access)
48. TMT.AOS.PRE.05.047.REL03 48 The Bottom Line The first-light baseline NFIRAOS will get diffraction limited images, and do the Astronomy envisaged by the Science Requirements Document, but just take a little more integration time.