330 likes | 648 Views
Lectures. Computational ImagingGeometric Optics and TomographyFresnel DiffractionHolographyLenses, Imaging and MTFWavefront CodingInterferometry and the van Cittert Zernike TheoremOptical coherence tomography and modal analysisSpectra, coherence and polarizationComputational spectroscopy an
E N D
1. Tutorial on Computational Optical Imaging University of Minnesota
19-23 September
David J. Brady
Duke University
www.disp.duke.edu
2. Lectures Computational Imaging
Geometric Optics and Tomography
Fresnel Diffraction
Holography
Lenses, Imaging and MTF
Wavefront Coding
Interferometry and the van Cittert Zernike Theorem
Optical coherence tomography and modal analysis
Spectra, coherence and polarization
Computational spectroscopy and imaging
3. Lecture 5. Lenses, Imaging and MTFOutline Thin lens transmittance and thin lens systems
Image formation
The coherent transfer function
The optical transfer function
MTF
4. Focal Imaging
5. Impulse response characterization
6. Impulse response characterization
7. Impulse response characterization
8. Impulse response characterization
9. Case 1: z1=z2=F
10. Case 1: z1=z2=F
11. Case 1: z1=z2=F
12. Case 2:
13. Circular Aperture
15. Imaging Transformation
16. Coherent Transfer Function
17. Sketch of the Coherent Transfer Function
18. Why do we measure the field in radar but the intensity in optics?
19. Coherence Functions of the Field
20. Space-time structure of coherence functions
21. Cross Spectral Density
22. Power Spectra
23. Spatially Incoherent Fields
24. Imaging Incoherent Fields
25. Incoherent Impulse Response
26. Circular Aperture
27. Optical Transfer Function
28. Interesting Mathematical Issues How would/could one change the pupil function to optimize for computational imaging?