360 likes | 457 Views
CIME Cyclotron Acceleration of RI Beams E < 25 AMeV, 1 - 8 AMeV for FF. 1 - Production Caves:: RNB C converter+UCx target 10 14 fissions/s p- & n-rich RNB (transfer, fusion-evaporation, DIC). Low energy RNB DESIR. LINAG Exp. Hall S3. 2 - Superconducting LINAC: Stable-Ion beams
E N D
CIME Cyclotron Acceleration of RI Beams E < 25 AMeV, 1 - 8 AMeV for FF 1 - Production Caves:: RNB C converter+UCx target 1014 fissions/s p- & n-rich RNB (transfer, fusion-evaporation, DIC) Low energy RNBDESIR LINAG Exp. HallS3 2 - Superconducting LINAC: Stable-Ion beams E ≤ 14.5 AMeV HI A/q=3, 1mA E ≤ 20 A MeV p,d, 4He (A/q=2 ions), 5mA Possible extension to A/q=6 ions
CIME Cyclotron Acceleration of RI Beams E < 25 AMeV, 1 - 8 AMeV for FF 1 - Production Caves:: RNB C converter+UCx target 1014 fissions/s p- & n-rich RNB (transfer, fusion-evaporation, DIC) Low energy RNBDESIR
Kr Yield, pps Today A Fast neutron induced fission SPIRAL 2 (5x1013 fiss./s) SPIRAL 2 Challenge : Up to 1014 fissions/s Max. few kW 200 kW 5mA ALTO (5x1011 fiss./s)
Sn Yield, pps A Fast neutron induced fission SPIRAL 2 (5x1013 fiss./s) SPIRAL 2 Challenge : Up to 1014 fissions/s Max. few kW 200 kW 5mA ALTO (5x1011 fiss./s)
Light and N=Z RIB at SPIRAL 2 Rough Estimation of Yields (Examples) Reactions to be used: transfer, fusion-evaporation, deep-inelastic
Regions of the Chart of Nuclei Accessible with SPIRAL 2 Beams : LINAG & RIB • light beams • RIB induced reactions Production of radioactive beams/targets: (n,g), (p,n) etc. Fusion reaction with n-rich beams Fission products (with converter) Fission products (without converter) High Intensity Light RIB
2007 2012-2015 Physics with Radioactive Ion Beams Reactions & Rates(From 0 to 100 MeV/n)
1 - Production Caves:: RNB C converter+UCx target 1014 fissions/s p- & n-rich RNB (transfer, fusion-evaporation, DIC) Low energy RNBDESIR
DESIR physics program • Decay spectroscopy - decay properties and nuclear structure studies - particle-particle correlations, cluster emission, GT strength - exotic shapes, halo nuclei • Laser spectroscopy - static properties of nuclei in their ground and isomeric states - nuclear structure and deformation • Fundamental interactions - CVC hypothesis, CKM matrix unitarity via 0+ 0+ transitions - exotic interactions (scalar and tensor currents) - CP (or T) violation with e.g. Radium • Solid state physics and other applications
Summary of decay spectroscopy experiments: The BESTIOL facility (BEta decay STudies at the SPIRAL2 IsOL facility) • Decay studies with halo nuclei • Clustering studies in light nuclei • Super-allowed b decays and the standard model of electro-weak interaction • Angular correlation measurements and standard model of electro-weak interaction • Cases of astrophysical interest • New magic numbers • Transition from Order to Chaos • Shape coexistence, deformation and Gamow-Teller distribution • High-spin isomers • Test of isospin symmetry combined with charge exchange reactions • Beta-delayed charged-particle emission: e.g. proton-proton correlation
Short half-lives (10ms) • High Qb values • Low Sp/n values • Selection rules: • Fermi: DT=0 ;DJ=0 ; pf = pi • Gamow-Teller: DT=0±1; DJ=0±1; pf = pi • Reduced transition probability: Decay properties of exotic nuclei • 1916 Rutherford & Wood [Philos. Mag. 31 (1916) 379] • 1963Barton & Bell identified 25Si as p emitter • Global properties -delayedparticle emission • Very Selective probe E, Level density Spin, Isospin -decay properties
CVC, CKM, exotic currents: 0+ 0+ b decays = 3073.5 (12) s(1) 3074.4 (12) s (1,2) Measurements: - Q value - T1/2 - branching ratios Vud0+0+ = 0.9738(4)(1) 0.9736(3)(1,2,3) VusK= 0.2200(23)(PDG) 0.2254(21)(4) VubB = 0.00367(47)(PDG) 0.9987(11) (~ 2 shift) (1) Towner and Hardy, PRL 94 (2003) 092501, PRC 71 (2005) 055501 (2)Savard et al., PRL 95 (2005) 102501 (3)Marciano & Sirlin, PRL 96 (2006) 032002 (4) E865, KTeV, NA48, KLOE (PDG) Particle Data Group, S. Eidelman et al., PLB 592 (2004) 1
} for ground and isomeric states LUMIERE: Laser Utilisation for Measurement and Ionization of Exotic Radioactive Elements • Collinear Laser spectroscopy: • - spins • - magnetic moments • - quadrupole moments • - change of charge radii • N=50, N=64, N=82, etc. • b-NMR spectroscopy: • - nuclear gyromagnetic factor • - quadrupole moment • monopole migration of proton and neutron single particle levels around 78Ni • persistance of N=50 shell gap around 78Ni • persistance of N=82 shell gap beyond 132Sn • Microwave double resonance in a Paul trap: • - hyperfine anomaly and higher order momenta • (octupole and hexadecapole deformation) • Eu, Cs, Au, Rn, Fr, Ra, Am ….
Isotope shift and nuclear moment measurements 178Hf isomer at Orsay F. Le Blanc et al. 101Zr at JYFL P. Campbell et al.
Isotope shift measurements at DESIR • with I ~ 103-104 pps: • N~50: • neutron skin in N > 50 Ge isotopes (neutron star studies) • deformation in N ≤ 50 Ni isotopes (collectivity vs magicity) • N~82: • shape evolution for Z ≤ 50 (Ag, Cd, In, Sn) • N~64: • strongly oblate shapes predicted in Rb, Sr and Y for N > 64 • Z~40: • shape transitions predicted in the Zr region (Mo, Tc, Ru) • Rare earth elements: • large deformation and shape transitions predicted (Ba, Nd, Sm)
Z=40 Z=28 N=50 N=40 The physics case for b-NMR on polarized beams: nuclear structure towards and beyond 78Ni Kr Produced at SPIRALII with d-induced fission Se Ge • Evolution of n orbits • from Z=40 to Z=28: • ground state spins and moments • of 83Ge, 81Zn, 79Ni and • of 81Ge, 79Zn, 77Ni • g-factors can reveal erosion of N=50 shell closure Zn Ni Lifetime OK for b-NMR studies G. Neyens et al., KU Leuven
CIME Cyclotron Acceleration of RI Beams E < 25 AMeV, 1 - 8 AMeV for FF 1 - Production Caves:: RNB C converter+UCx target 1014 fissions/s p- & n-rich RNB (transfer, fusion-evaporation, DIC)
Physics with RIB at 2-20 MeV/nucl. • Reaction Types • elastic • inelastic • transfer • breakup • fusion • Physics Areas Considered: • single-particle structure • nuclear pairing • spectroscopy of very neutron-rich nuclei • nuclear clustering and nuclear molecules • direct reaction mechanisms • studies of correlation in heavy-ion reactions • applications to astrophysics
Structure of 46Ar N=28 48Ca 46Ar 44S 42Si L. Gaudefroy, O. Sorlin et al, PRL97(2006)092501 • 46Ar(d,p)47Ar transfer reaction at GANIL/SPIRAL • - Spectroscopy of final nucleus • Angular distributionsof protons • Comparison with DWBA : ℓ • Spectroscopic factor
Structure of 46Ar N=28 48Ca 46Ar 47Ar 49Ca 44S -330keV Gap N=28 : 4.8 MeV 4.47 MeV 42Si -8% f7/2-f5/2 : 8.8 MeV 7.92 MeV -45% p3/2-p1/2 : 2.02 MeV 1.13 MeV L. Gaudefroy, O. Sorlin et al, PRL97(2006)092501 • Reduction of the spin-orbit splitting Similar effects to a reduction of the spin-orbit interaction Observations incompatible with diffusivity arguments Other effects… 49Ca : R. Abegg et al. [NPA303 (1978)]
Coulomb Excitation of 74,76Kr : Evidence for Shape Coexistence 4+ 2+ 0+ 6+ 4+ 0+ 8+ 2+ 1 2 2 1 1 1 1 2 differential Coulex cross section SPIRAL beams 76Kr 5×105 pps 74Kr 104 pps 4.5 MeV/u Pb EXOGAM oblate + 3.1(8) eb prolate - 0.9(6) eb + 2.1(4) eb • complete set of transitional and diagonal • matrix elements (including sign) • first reorientation measurement with RIB • direct confirmation of shape coexistence + 1.9(8) eb 74Kr E. Clément et al.
Oblate Quadrupole deformation of the nuclear ground states Prolate M. Girod, CEA Bruyères-le-Châtel • oblate ground states predicted for A~70 near N=Z • prolate and oblate states within small energy range • ⇒shape coexistence Shapes of atomic nuclei
new spin regime: 70 - 80 ħ • Hyperdeformation • Jacobi shape transition • Band termination • Collapse of pairing • …? pushing the angular momentum always led to new physics ! Reaching the highest angular momenta compound nucleus reached • in 48Ca • induced reaction • in 94Kr (or 132Sn) • induced reaction 48Ca 132Sn+48Ca 50Ti 94Kr + … 136Te+48Ca 36S 54Cr 30Si 40Ar 26Mg 58Fe 64Ni 70Zn 76Ge 96Zr 82Se 86Kr 100Mo 76Ge 48Ca + … 124Sn 70Zn 88Sr 104Ru 130Te 116Cd 110Pd Examples: 48Ca+ 64Ni 112Cd* 94Kr+ 26Mg 120Cd* 64Ni+ 64Ni 128Ba* 94Kr+ 48Ca 142Ba* 48Ca+ 124Sn 172Yb* 132Sn+ 48Ca 180Yb* 64Ni Nd Ce Sm Gd Xe Er Hf Dy Cd Yb Ba Sn Te
Gamma Array Detector(s) Particle Array New detectors (Main Collaborations) Sample DESIR SPIRAL 2 n-tof S3 AGATA FAZIA GASPARD PARIS ACTAR EXOGAM 2
Low energy RNBDESIR LINAG Exp. HallS3 2 - Superconducting LINAC: Stable-Ion beams E ≤ 14.5 AMeV HI A/q=3, 1mA E ≤ 20 A MeV p,d, 4He (A/q=2 ions), 5mA Possible extension to A/q=6 ions
S3: The Super Separator Spectrometer for LINAG beams Combination: • Very high intensity primary beam • Whole range of primary beams available • High acceptance spectrometer • High beam rejection • unique opportunities for the creation of short-lived • isotopes by fusion-evaporation, transfer reactions • and deep-inelastic reactions • Provide access to species not available by isolde techniques
Focus on 1014part/s 36evt/day @ 1pb SHE/VHE SHE/Heavy synthesis + spectroscopy SHE/Heavy chemistry SHE/Heavy (gas cell/masses/laser) N=Z 100Sn region (gas cell/masses/decays/laser) Secondary Coulex with inverse kinematics Light nuclei (transfer reactions) DIC need more inputs !!!
Challenges • High Beam intensity • High power target : 10pµA ( = 6.1014pps) or more • Rejection of the beam : >1013 Low Energy(fusion-evaporation residues) • Large angular acceptance : +/- 80 mrad X and Y • Large Charge state acceptance : Bρ acceptance: +/- 10% Many reaction channels(evaporation channels) • M/q selection : 1/350 resolution • Identification when possible
S3 Low energy branch • Why at S3 A S3 offers unique potential for important isotopes produced with low cross section, in particular proton rich nuclei and heavy elements. The low-energy branch of S3 will allow the production of beams of refractory elements as well as of very short-lived isotopes at ISOL energies • Why a Gas catcher => universal technique • Fast extraction time • Chemical independence • Isobar separation
Optical design WG Technical concepts Detection: Recoil Decay Tagging α, e-, γ, p spectroscopy COULEX Measurements Gas catcher to a low energy branch High speed Rotating Target Refractive materials Actinides targets Cooling… Two stages separator for rejection and purification
Regions of the Chart of Nuclei Accessible with SPIRAL 2 Beams : LINAG & RIB • light beams • heavy ions • RIB induced reactions • LINAG beams & exp. area Production of radioactive beams/targets: (n,g), (p,n) etc. SHE N=Z Isol+In-flight Transfermiums In-flight Fusion reaction with n-rich beams Fission products (with converter) Fission products (without converter) Deep Inelastic Reactions with RIB/stable beams High Intensity Light RIB
Kr Yield, pps Today A SPIRAL 2 yields of fission fragment after acceleration compared to other RIB facilities (best numbers for all) Sn Yield, pps Today A
2. Fusion of exotic: Ex: GANIL FUTURE 134Sn+ 48Ca182Yb SPIRAL 2 Nuclear Physics - Examples 4. Fusion of stable beams: Search for Super-heavy 5. Fusion of stable: high rate of N=Z. Ex: >10 100Sn / s. 3. Fusion of exotic beams: neutron rich & heavy nuclei Proton number Z 140Xe+ 136Xe276108 1. Fission of Uranium: heavy neutron rich. Ex: > 109 132Sn / s. 6. Light ion reaction: 9Be(n,α)6He ~ 1011 pps Neutron number N
Neutrons for science Atomic & solid state physics Radiobiology & Isotope production The scientific case of SPIRAL 2 Dynamics and thermodynamics in charge asymmetric nuclear matter Heavy and Super Heavy Elements ISOSPIN DEGREES OF FREEDOM IN NUCLEAR FORCES Position of drip-lines N=Z rp-process r-process path Shell structure far from stability Spins & Shapes Spins&Shapes Haloes & Structures in the Continuum SPIRAL 2 White Book: www.ganil.fr
RNB post acceleration - Beam Energies from CIME 100Sn20+ Isotope Maximum Energy Beam Intensity (MeV/u) (pps) 132Sn20+ 6.0 2x109 132Sn21+ 6.7 2x109 132Sn22+ 7.3 1.7x109 132Sn23+ 8.0 1.2x109 132Sn24+ 8.7 4x108 132Sn25+ 9.4 1x108 72Kr20+ Lower Energies Energy range of SPIRAL2 RIB : < 30keV and 1-20 MeV/nucl. F. Chautard