110 likes | 213 Views
Focus of Attention for Volumetric Data Inspection . Ivan Viola 1 , Miquel Feixas 2 , Mateu Sbert 2 , and Meister Eduard Gr öller 1. 1 Institute of Computer Graphics and Algorithms Vienna University of Technology. 2 Institute of Informatics and Applications University of Girona. Goal.
E N D
Focus of Attention for Volumetric Data Inspection Ivan Viola1, Miquel Feixas2,Mateu Sbert2, and Meister Eduard Gröller1 1 Institute of Computer Graphics and Algorithms Vienna University of Technology 2 Institute of Informatics and Applications University of Girona
Goal Input: known and classified volumetric data High level request: show me feature X Output: visually pleasing focusing at X I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
Focusing Considerations Focus discrimination Characteristic viewpoint Smart focusing approach I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
Visual Focus Discrimination • Levels of sparseness • Dense for focus to visually pop-out • Sparse for context visually suppressed • Cut-aways to unveil internal features vessels kidneys intestine I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
visibility estimation v 2 image-space weight v v object selection by user 1 3 o o 2 2 o o 1 1 o o 3 3 information-theoretic framework for optimal viewpoint estimation importance distribution ... p(v ) p(o |v ) 1 1 1 ... ... m p(o |v ) Σ j i I(v ,O) = p(o |v ) log i j i p(o ) j j o o o 1 2 3 ... ... p(v ) p(o |v ) n m n ... p(o ) p(o ) m 1 Estimation of Characteristic Viewpoints I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
Guided Navigation • Focusing at feature X • Discrimination of X from context • Change to a characteristic viewpoint of X • Refocusing from feature X to feature Y • De-emphasis of feature X • Emphasis of feature Y • Change to general characteristic viewpoint • Change to characteristic viewpoint of Y I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
v o c o 2 1 o o 2 1 o 3 v v 2 1 Refocusing I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
Refocusing I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
Conclusions • Often no need to have all degrees of freedom • Users need smart tools • One image is more than thousands words • Visual story says more than thousand images I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
Proof Any Questions? I. Viola, M. Feixas, M. Sbert, and M. E. Gröller
Thank you for your attention! Any Questions?