1 / 22

Hemilabile Coordination Complexes as Fluorescent Chemosensors The Groundwork: RuPOMe

Hemilabile Coordination Complexes as Fluorescent Chemosensors The Groundwork: RuPOMe. Anthony Tomcykoski. Overview. Introduction Synthetic Approach Characterization Conclusions Future Work. Introduction. Hemilabile Coordination Polydentate chelates Inert and labile binding positions

rasia
Download Presentation

Hemilabile Coordination Complexes as Fluorescent Chemosensors The Groundwork: RuPOMe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hemilabile Coordination Complexes as Fluorescent ChemosensorsThe Groundwork: RuPOMe Anthony Tomcykoski

  2. Overview Introduction Synthetic Approach Characterization Conclusions Future Work

  3. Introduction • Hemilabile Coordination • Polydentate chelates • Inert and labile binding positions • Phosphine-ether ligands Hemilabile coordination complex in the presence of a small polar molecule (1)

  4. Introduction • Examples of Hemilabile Ligands Tris(2,6-methoxyphenyl)phosphine P(OMe)6 Bis(2-methoxyphenyl)phenylphosphine P(OMe)2 POMe Diphenyl(2-methoxyphenyl)phosphine

  5. Introduction • Photosensitizer • [Ru(bpy)3]+2 • Long lived 3MLCT • Fluorescent Chemosensor • Molecular sensing • Monitor photophysical properties

  6. Synthetic Approach Step One: Make a suitable starting material .2 H2O Starting Material Ru(bpy)2Cl2.2H2O

  7. Synthetic Approach Step Two: Remove inner sphere chloride Introduce non- coordinating anion (BF4-) 2 Solvated bis(bipyridyl) complex

  8. Synthetic Approach Step Three: Coordinate phosphine-ether hemilabile ligand Isolate product RuPOMe

  9. Hemilabile Coordination Complexes Tolylterpyridylchromophores Tridentate Ligands RuPOMe RuP(OMe)6 Bipyridyl Chromophores Bidentate Ligands RuP(OMe)2 Ru(bpy)2P(OMe)6

  10. Characterization UV/Vis Spectroscopy Infrared Spectroscopy Emission Spectra Excited State Lifetime NMR (1H, 13C, 31P)

  11. UV/Vis SpectroscopyBipyridyl Systems MLCT energy gap varies in each complex [Ru(bpy)3](PF6)2 450nm RuCl3.nH2O 420nm Ru(bpy)2Cl2 376, 548nm [RuPOMe](PF6)2 450nm [Ru(bpy)2P(OMe)6](PF6)2 430nm in EtOH/Acet 476nm [Ru(bpy)3](PF6)2 RuCl3.nH2O Ru(bpy)2Cl2.2H2O

  12. Jablonski Diagram MLCT[Ru(bpy)3]+2 Short, sub-picosecond ISC 1MLCT Long, ~5μs S1 3MLCT T1 E Radiative Decay hν Nonradiative Decay • Interested in Monitoring • 3MLCT Lifetime • Radiative Decay or Emission S0

  13. UV/Vis SpectroscopyTolylterpyridyl Systems MLCT Bands Ru(ttpy)Cl3 440nm [Ru(ttpy)2]Cl2 486nm [RuP(OMe)6](BF4)2 460nm

  14. Emission SpectraRoom Temperature [RuPOMe](PF6)2 emission 601nm excitation 463nm [Ru(bpy)2P(OMe)6](PF6)2 emission 505nm excitation 430nm RuP(OMe)6](BF4)2 emission 413nm excitation 343nm

  15. Excited State Lifetime [Ru(bpy)3]+2  = 5µs (77K, literature)  = 132.4ns (Room Temperature, CH3CN, experimental) emission 610nm RuPOMe  = 319ns emission 601nm • Conclusion: • Room temperature lifetimes are inconsistent • The lifetime of tolylterpyridine ruthenium complexes are on the order of picoseconds

  16. NMR Studies • 1H NMR • Methoxy proton shifts • Observe bound and unbound ligand signal • 13C NMR • Signal:Noise low, numerous peaks • 31P NMR • High number of scans (6400 scans) • Unique 31P resonances with analyte complexation • Long T1 Relaxation (PPh3=13.369s, POMe=18.396s)

  17. 1H NMR 2,2’-bipyridine free ligand Aromatics > 7ppm POMe free ligand -OCH3 3.70ppm [RuPOMe](PF6)2 -OCH3 2.05ppm

  18. 31P NMR [RuPOMe](PF6)2 [2.85 x 10-3M] in Acetone-d6 56ppm Ether Bound -143ppm(septet) PF6- POMe free ligand -14.45ppm [RuP(OMe)6](BF4)2 [3.0 x 10-3M] in Acetone-d6 15.5ppm Ether bound -63.5ppm(d) undesired product -68.5ppm(d) undesired product P(OMe)6 free ligand -70.8ppm

  19. Conclusions • [RuPOMe](PF6)2 successfully synthesized and characterized • [RuP(OMe)2] and [RuP(OMe)6] require different synthetic approach • Tolylterpyridine is not ideal as a chromophoric ligand • MLCT electronic state observed for bipyridyl and tolylterpyridylchromophores • Complexes are luminescent, but minimal at room temperature

  20. Future Work • Concentration Dependence • Analyte selectivity titrations • Low Temperature (77K) Photophysics • 31P NMR in Determining Equilibrium • Quantum Yield Measurements • Use Fluorescent Polymer Units as Hemilabile Ligands

  21. Acknowledgements • Jones’ Group • Dr. Jones, Dr. Martin, Dr. Flynn • Jasper, Wenrong, Catherine, Sherryllene, Dickson, Peter • Undergraduates • Dr. Jürgen Schulte • Chemistry Department • Binghamton University

  22. References • Rogers, C.W.; Zhang, Y.; Patrick, B.O.; Jones, W.E.; Wolf, M.O. Inorg. Chem. 2002, 41, 1162-1169 • Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes; Academic Press: London, 1992. • Angell, S.E.; Zhang, Y.; Rogers, C.W.; Wolf, M.O.; Jones, W.E.; Inorg. Chem. 2005, 44, 7377-7384 • Alary, F.; Heully, J.L.; Bijeire, L.; Vicendo, P. Inorg. Chem. 2007, 46, 3154-3165. • Wang, J.; Fang, Y.Q.; Hanan, G.S.; Loiseau, F.; Campagna, S. Inorg Chem. 2005, 44, 5-7. • Rogers, C.W.; Wolf, M.O. Chem. Comm. 1999, 2297-2298. • Angell, S.E., Rogers, C.W.; Zhang, Y.; Wolf, M.O.; Jones, W.E.; Coordination Chemistry Reviews. 2006, 250, 1829-1841. • Demas, J.N.; Adamson, A.W. J. Am. Chem. Soc.1971, 93, 1800-1801

More Related