1 / 15

CHAPTER 4 The Sequence Alignment Problem 演講者:高瑜珮 組員:吳智銘、鄭惠玲、黃文勝、 謝志忠、張豊明、許雯琇

CHAPTER 4 The Sequence Alignment Problem 演講者:高瑜珮 組員:吳智銘、鄭惠玲、黃文勝、 謝志忠、張豊明、許雯琇. The Sequence Alignment Problem. 我們可以用下面兩個 序列 (Sequence) 來說明 序列調整的問題 (The Sequence Alignment Problem) S1=GAACTG ;S2=GAGCTG GAACTG--- GAACTG GA---GCTG GAGCTG

ravi
Download Presentation

CHAPTER 4 The Sequence Alignment Problem 演講者:高瑜珮 組員:吳智銘、鄭惠玲、黃文勝、 謝志忠、張豊明、許雯琇

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHAPTER 4 The Sequence Alignment Problem 演講者:高瑜珮 組員:吳智銘、鄭惠玲、黃文勝、 謝志忠、張豊明、許雯琇

  2. The Sequence Alignment Problem • 我們可以用下面兩個序列(Sequence)來說明序列調整的問題(The Sequence Alignment Problem) S1=GAACTG ;S2=GAGCTG GAACTG--- GAACTG GA---GCTG GAGCTG • 我們可以發現前者是比後者好 調整後 調整前

  3. 用計算分數的方式來解問題 • ai 和 bj是兩個序列 1. If ai is aligned with bj and ai =bj , the score is +2. 2. If ai or bj is aligned with a blank(-),the score is -1. 3. If ai is aligned with bj and ai≠bj, the score is -1. • 所以我們可以得到S1=abbcad ; S2=aecb 調整後計算出來的分數為: ab-bcad aecb--- 2x(+2)+5x(-1)=-1

  4. 用Dynamic Programming Approach • 讓 A(i.j)表示ai和bi調整過後的最理想分數 • 公式: A(0,0)=0 A(i,0)=-i A(0,j)=-j A(i,j)= 1.max{A(i-1,j-1)-1,A(i-1,j)-1,A(i,j-1)-1},如果ai≠bj. 2.A(i-1,j-1)+2,如果ai=bj.

  5. 圖一 Let S1= abbcad ; Let S2 = eacb

  6. 我們可以用下列方式推算出結果: 1.if(i.j)point to (i-1,j-1),ai is aligned with bj. 2.if(i.j)point to (i-1,j), ai is aligned with blank(-). 3.if(i.j)point to (i,j-1), bj is aligned with blank(-). • 由圖一推算出結果 結果: -abbcad -abbcad -abbcad eacb--- ea--cb- ea--c-b

  7. The Local Alignment Problem • 公式: A(i,j)=max{0, A(i-1,j-1)+ α(i.j), A(i.j-1)+α(i.-), A(i-1,j)+α(-,j)} • 範例: S1=abbcdae ; S2=afgfde

  8. 圖二 由圖二,可得到結果 dae d-e

  9. The Affine Gap Penalty • 定義: A long gap(缺口) is often more preferable than serveral gap.the Affine Gap Penalty can solve this problem.

  10. S1=ACTTGATCC, S2=AGTTAGTAGTCC為兩個序列. 1.最理想的調整結果 ACTT-G-A-TCC AGTTAGTAGTCC score=8x2-1-3x(4+1x1)=0 2.調整後只有一個Gap(缺口)的結果: ACTT---GATCC AGTTAGTAGTCC score=6x2-3x1-(4+3x1)=2 Pg+KPe Pg=4, Pe=1

  11. 公式: A(0.0)=A2(0,0)=A3(0,0)=0 A2(i,0)=A(i,0)= -Pg-iPe for i>0 A3(0,j)=A(0,j)=-Pg-jPe for j>0 A2(0,j)=A(i,0)=-∞ A(i,j)=max{A1(i,j),A2(i.j),A3(i,j)} A1(i,j)=A(i-1,j-1)+α(ai,bj) A2(i,j)=max{A2(i-1,j)-Pe,A(i-1,j)-Pg-Pe} A3(i,j)=max{A3(i-1,j)-Pe,A(i-1,j)-Pg-Pe}

  12. 結果: ACTT---GATCC AGTTAGTAGTCC

  13. Minimal Spanning Tree S1=ATGCTC, S2=ATGAGC, S3=TTCTG S4=ATGCATGC S1=ATGCTC S2=ATGAGC D(S1,S2)=2 S1=ATGC-T-C S4=ATGCATGC D(S1,S4)=2 S1=ATGCTC S3=TT-CTG D(S1,S3)=3 D(S2,S3)=4 D(S2,S4)=2 D(S3,S4)=4

  14. S1 3 2 S3 S2 2 S4

  15. S1=ATGCTC S2=ATGAGC (S1=ATG-C-TC) S2=ATG-A-GC S4=ATGCATGC S1=ATG-C-TC (S2=ATG-A-GC) S3=TT--C-TG (S4=ATGCATGC) S1 3 2 S3 S2 2 S4

More Related