1 / 17

Preface

Preface. Linear Algebra Ming-Feng Yeh Department of Electrical Engineering Lunghwa University of Science and Technology. Introduction.

ray
Download Presentation

Preface

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Preface Linear Algebra Ming-Feng Yeh Department of Electrical Engineering Lunghwa University of Science and Technology

  2. Introduction • Elementary Linear Algebra is designed for the introductory linear algebra generally taken by sophomores and juniors majoring in engineering, computer science, mathematics, economics, statistic, or operations research. • The primary prerequisite for this course isalgebra, but we also assume familiarity with analytic geometry and trigonometry. • Calculus is not a prerequisite for this course, but some examples and exercises require a knowledge of calculus. Preface

  3. What is Linear Algebra? • The most fundamental theme of linear algebra, and the first topic covered in this textbook, is the theory of systems of linear equations. • Let x represent the speed of theplane and y the speed of the wind,then the following system modelsthe problem. Preface

  4. Systems of Linear Equations • The system of two equations and two unknowns.The solution is x = 900 kilometers per hour and y = 100 kilometers per hour. • Geometrically, this systemrepresents two lines in thexy-plane. Two lines intersectat the point (900, 100), whichverifies the answer we obtained. y x + y = 1000 (900, 100) x xy = 900 Preface

  5. Topics of Linear Algebra • Solving systems of linear equations is one of the most important applications of linear algebra. • Topics of linear algebra: • The fundamental topics – linear systems, matrices and determinants • The central theoretical topic – vector space • Another major focus – engenvalue and eigenvector Preface

  6. 高中(職)數學回顧 #1 直線方程式之求法: • 兩點式: • 點斜式:(已知一點及其斜率)已知之斜率為已知線上之一點為 (x0, y0)則直線方程式為 y = mx + b其中y0 = mx0 + b y = mx + b y (x2, y2) y (x1, y1) x x (x0, y0) Preface

  7. 高中(職)數學回顧 #2 • 考慮 xy平面(xy – plane)上之任意兩直線: • 若 即 此時兩直線不平行,不平行之兩直線必交於一點。 • 此線性方程式系統在此情況之下只有唯一解。 • 定義 若 時, 表示也就是說, 兩直線在 時會交於一點。 • 『 』為行列式值,將在第3章進一步介紹。 Preface

  8. 高中(職)數學回顧 #3 • 若 即 或 此時兩直線可能平行或重合。 • 若 表兩直線重合,此時有無窮多組解。 • 若 表兩直線平行,此時有無解。 Preface

  9. 高中(職)數學回顧 #4 • 試求出以下線性方程式系統之解: 1. 將第(1)式與第(2)式對調,不影響 “解” 之結果。 2. 將第(3)式乘以(–2)加至第(4)式,可得 3.將第(5)式乘以(–1)可得 4.將第(6)式代回第(3)式,可得 (兩線交於一點) Preface

  10. 高中(職)數學回顧 #5 • 試求出以下線性方程式系統之解: 將第(1)式乘以(–2)加至第(2)式,可得 可發現第(3)式為一矛盾方程式, 故此線性方程式系統無解。 (兩平行直線) Preface

  11. 高中(職)數學回顧 #6 • 試求出以下線性方程式系統之解: 將第(1)式乘以(–2)加至第(2)式,可得 可發現第(3)式為一恆等式, 故此線性方程式系統無窮多解。(兩平行重合) 令 y = t, t R, 則 x = 4 – 2t.則此線性方程式系統之解集合為:{(4 – 2t, t): t R} Preface

  12. y L1 (x1, y1) (x2, y2) (x0, y0) x L2 高中(職)數學回顧 #7 垂直之兩直線 • 特例:兩座標軸 x = 0 (m1 = 0)和 y = 0 (m2 = )必為垂直之兩直線 • 通式: • 若 則當 時,L1與 L2垂直。 Preface

  13. y (x1, y1) (x2, y2) (0, 1) L1 L2 x (1, 0) 高中(職)數學回顧 #8 • 向量為一有方向性之線段(有方向、大小之量,起點為原點) • 圖示之兩向量為(x1, y1) 和 (x2, y2) • 內積之定義: • 當內積等於0時,表兩向量垂直。即 • 例:(x1, y1) = (1, 0), (x2, y2) = (0, 1),則 Preface

  14. 94數學考科 • 兩射線OA與OB交於O點,試問下列選項中哪些向量的終點會落在陰影區域內?   Preface

  15. 94數學考科 O • 座標平面上一鳶形ABCD,其中A,C在y-軸,B,D在x-軸上,且 , , 。令 分別表直線AB, BC, CD, DA之斜率。試問下列哪些敘述成立?    Preface

  16. 94數學考科 • 假設座標空間中三相異平面E1、 E2、 E3皆通過(1,2,0)與(3,0,2)兩點,試問以下哪些點也同時在此三平面上?(1) (2,2,2); (2) (1,1,1); (3) (4, 2,2); (4) (2,4,0);(5) (5, 4, 2). 解:E1、 E2、 E3三平面共線,所求之點 P若落在通過A(1,2,0)與B(3,0,2)兩點之直線上,即同時在此三平面上。三點共線問題 Preface

  17. P  A B Q 94數學考科 • ABCD-EFGH為邊長等於1之正立方體。若P 點在立方體之內部且滿足 ,則P點至直線AB之距離為何? 解:由題意可知, Preface

More Related