1 / 5

MAE 4261: AIR-BREATHING ENGINES

MAE 4261: AIR-BREATHING ENGINES. Integral Forms of Mass and Momentum Equations January 17, 2012 Mechanical and Aerospace Engineering Department Florida Institute of Technology D. R. Kirk. CONSERVATION OF MASS. This is a single scalar equation

rchism
Download Presentation

MAE 4261: AIR-BREATHING ENGINES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MAE 4261: AIR-BREATHING ENGINES Integral Forms of Mass and Momentum Equations January 17, 2012 Mechanical and Aerospace Engineering Department Florida Institute of Technology D. R. Kirk

  2. CONSERVATION OF MASS • This is a single scalar equation • Velocity doted with normal unit vector results in a scalar • 1st Term: Rate of change of mass inside CV • If steady d/dt( ) = 0 • Velocity, density, etc. at any point in space do not change with time, but may vary from point to point • 2nd Term: Rate of convection of mass into and out of CV through bounding surface, S • 3rd Term (=0): Production or source terms Relative to CS Inertial

  3. MOMENTUM EQUATION: NEWTONS 2nd LAW Inertial Relative to CS • This is a vector equation in 3 directions • 1st Term: Rate of change of momentum inside CV or Total (vector sum) of the momentum of all parts of the CV at any one instant of time • If steady d/dt( ) = 0 • Velocity, density, etc. at any point in space do not change with time, but may vary from point to point • 2nd Term: Rate of convection of momentum into and out of CV through bounding surface, S or Net rate of flow of momentum out of the control surface (outflow minus inflow) • 3rd Term: • Notice that sign on pressure, pressure always acts inward • Shear stress tensor, t, drag • Body forces, gravity, are volumetric phenomena • External forces, for example reaction force on an engine test stand • Application of a set of forces to a control volume has two possible consequences • Changing the total momentum instantaneously contained within the control volume, and/or • Changing the net flow rate of momentum leaving the control volume

  4. HOW A ROCKET WORKS F Chemical Energy Rocket Propulsion (class of jet propulsion) that produces thrust by ejecting stored matter • Propellants are combined in a combustion chamber where chemically react to form high T&P gases • Gases accelerated and ejected at high velocity through nozzle, imparting momentum to engine • Thrust force of rocket motor is reaction experienced by structure due to ejection of high velocity matter • Same phenomenon which pushes a garden hose backward as water flows from nozzle, gun recoil Thermal Energy Kinetic Energy

  5. HOW AN AIRCRAFT ENGINE WORKS Chemical Energy Kinetic Energy Thermal Energy • Flow through engine is conventionally called THRUST • Composed of net change in momentum of inlet and exit air • Fluid that passes around engine is conventionally called DRAG Excellent website for how internal components work: http://www.geae.com/education/index.html

More Related