290 likes | 402 Views
Outline. Toms Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing. . Heterogeneity in PLS-PMPATHMOX ApproachSimulation StudiesConclusions. Heterogeneity. Toms Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing. . . . . . . . . . . . . . . . . . .
E N D
1. A simulation study of Pathmox with non-normal data Gastón Sįnchez, Tomąs Aluja-Banet
2. Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
3. Heterogeneity Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
4. Heterogeneity Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
5. Assignable sources of heterogeneity Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
6. Heterogeneity in PATHMOX Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
7. Heterogeneity in PATHMOX Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
8. The PATHMOX Approach Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
9. Split criterion Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
10. Hypothesis test Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
11. Stopping criterion Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
12. Simulation studies Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
13. Experimental conditions Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
14. Path coefficients Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
15. Data distributions Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
16. Symmetric distribution b (6,6) Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
17. Moderate skew distribution b (9,4) Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
18. High skew distribution b (9,1) Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
19. Global results Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
20. Influence of b distance by distribution Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
21. Influence of sample size by distribution Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
22. Influence of noise of LVs Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
23. Influence of noise of MVs Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
24. Unbalanced Segments (normal data) Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
25. Unbalanced Segments b (9,4) Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
26. Influence of different variances Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
27. Influence of different variances Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
28. Conclusions Non normality of distributions doesnt affect the results of the test statistic
Splits with unbalanced children nodes delivers less sensitive p-values of the statistic. F-statistic favors balanced splits.
Unequal variances of endogenous latent variables render less reliable the test statistic and hence the tree.
The F test is used to discover unexpected segments by ordering the splits for a given node, as a data mining tool. Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
29. References Cassel, C., Hackl, P., & Westlund, A.H. (1999) Robustness of partial least squares method for estimating latent variable quality structures. Journal of Applied Statistics, 26(4): 435-446.
Chin, W. (2000) Frequently Asked QuestionsPLS & PLS-Graph http://disc-nt.cba.uh.edu/chin/plsfaq/plsfaq.htm.
Chin, W. (2003) A Permutation Based Procedure for Multi-Group Comparison of PLS Models. In: Proceedings of the PLS03 Intl. Symposium, 33-43. M. Vilares, M. Tenenhaus, P. Coelho, V. Esposito Vinzi, A. Morineau (Eds), Decisia.
Chin, W.W., Marcolin, B.L., and Newsted, P.R. (2003) A Partial Least Squares Latent Variable Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and Voice Mail Emotion/Adoption Study. Information Systems Research, 14(2): 189-217.
Chow, G. (1960) Tests of Equality between Sets of Coeffs. in Two Linear Regressions. Econometrica, 28(3): 591-605.
Dilon, W.R., & Kumar, A. (1994) Latent Structure and Other Mixture Models in Marketing: An Integrative Survey and Overview. In: Advanced Methods of Marketing Research, Richard P. Bagozzi (Ed.), Blackwell, 295-351.
Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., & Tenenhaus, M. (2008) REBUS-PLS, A Response-based procedure for detecting unit segments in PLS Path Modelling. App. Stoch. Models in Business & Industry, 24(5): 439-459.
Goodhue, D., Lewis, W. & Thompson, R. PLS, Small Sample Size, and Statistical Power in MIS Research. (Proceedings of the 39th Hawaii International Conference on System Sciences - 2006, HICSS06, Track 8, 2006).
Hahn, C., Johnson, M.D., Herrmann, A., & Huber, A. (2002) Capturing Customer Heterogeneity Using a Finite Mixture PLS Approach. Schmalenbach Business Review, 54: 243-269.
Henseler, J. (2007) A New and Simple Approach to Multi-Group Analysis in PLS Path Modeling. In: H. Martens and T. Naes. (Eds), Proceedings of the PLS07 International Symposium, Matforsk, As, Norway, 104-107. Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing
30. References Jedidi, K., Jagpal, H.S., & DeSarbo, W.S. (1997) Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity. Marketing Science, 16(1): 39-59.
Lebart, L., Morineau, A., & Fénelon J.P. (1979) Traitement des données statistiques. Paris: Dunod.
Lohmöller, J. B. (1989) Latent Variable Path Modeling with Partial Least Squares. Heidelberg: Physica-Verlag.
Lubke, G.H. & Muthén, B. (2005) Investigating Population Heterogeneity with Factor Mixture Models. Psychological Methods, 19(1): 21-39.
Palumbo, F. & Romano, R. (2008) Possibilistic PLS Path Modeling: A New Approach to the Multigroup Comparison. In: Proceedings in Computational Statistics, 303-314. Paula Brito (Ed), Heidelberg: Physica-Verlag.
Ringle, C. & Schlittgen, R. (2007) A Genetic Algorithm Segmentation Approach for Uncovering & Separating Groups of Data in PLS-PM. In: H. Martens & T. Naes. (Eds) Proceedings of the PLS07 Intl. Symposium, Matforsk, As, Norway, 75-78.
Sįnchez, G. & Aluja, T. (2007) A Simulation Study of PATHMOX (PLS Path Modeling Segmentation Tree) Sensitivity. In: H. Martens & T. Naes. (Eds) Proceedings of the PLS07 Intl. Symposium, Matforsk, As, Norway, 33-36.
Serch, O. (2008) Sistema de Visualització de models PLS-PM. Projecte Final de Carrera. Facultat dInformątica de Barcelona, Universitat Politčcnica de Catalunya. Enero, 2008.
Squillacciotti, S. (2005) Prediction oriented classification in PLS Path Modelling. In: Proceedings of the PLS05 Intl. Symposium, T. Aluja, J. Casanovas, V. Esposito, A. Morineau, M. Tenenhaus (Eds), SPAD Test&Go, 499-506.
Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.M., & Lauro, C. (2005) PLS path modeling. Computational Statistics & Data Analysis, 48: 159-205. Tomąs Aluja. A simulation study of PATHMOX with non-normal data. PLS'09. Beijing