1 / 48

Example: MRP Schedule

Example: MRP Schedule. LocoMopeds is a manufacturer of off-road mopeds. The following product structure diagram represents the bill of materials for its dual-carburetor Model 442 moped. MOPED. Level 0. ENGINE ASSEMBLY. GAS TANK. WHEEL ASSEMBLY (2). FRAME. Level 1. MOTOR.

reidar
Download Presentation

Example: MRP Schedule

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Example: MRP Schedule LocoMopeds is a manufacturer of off-road mopeds. The following product structure diagram represents the bill of materials for its dual-carburetor Model 442 moped. MOPED Level 0 ENGINE ASSEMBLY GAS TANK WHEEL ASSEMBLY (2) FRAME Level 1 MOTOR CARBURETOR (2) HUB ASSEMBLY TIRE Level 2

  2. Example: MRP Schedule • Bill of Material Parent Component Level Compon. Code Code Code Description Req’d 442 0 #442 Moped 442 EA 1 Engine Assem. 1 GT 1 Gas Tank 1 WA 1 Wheel Assem. 2 F 1 Frame 1 EA M 2 Motor 1 C 2 Carburetor 2 WA HA 2 Hub Assem. 1 T 2 Tire 1

  3. Example: MRP Schedule • Inventory Status Report

  4. WEEK 10 11 12 13 14 15 16 QUANTITY 0 1000 0 1300 800 1200 1400 Example: MRP Schedule The company is currently planning production for weeks 10 through 16. Based on existing orders and demand forecasts, the master production schedule is as follows: Master Production Schedule: #442 Moped Determine the MRP schedule required to support the master production schedule for the Model 442 moped in weeks 10-16.

  5. Example: MRP Schedule • MRP Schedule for #442 Mopeds for Weeks 10 - 16, considering that: • Gross Requirements come from the moped MPS • There is an On-Hand balance of 500 mopeds at the end of week 9 • There are no Scheduled Receipts for mopeds • A lot-for-lot rule is used for ordering mopeds • Safety stock of 200 mopeds is desired • Lead time for mopeds is one week

  6. ITEM: 442 MOPED LT: 1 LOT SIZE: LFL SS: 200 WEEK 10 11 12 13 14 15 16 1000 800 GROSS REQUIREMENTS 0 0 1400 1300 1200 SCHEDULED RECEIPTS AVAILABLE (ON-HAND = 500) NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for #442 Mopeds . . . Initially

  7. ITEM: 442 MOPED LT: 1 LOT SIZE: LFL SS: 200 WEEK 10 11 12 13 14 15 16 1300 800 GROSS REQUIREMENTS 0 0 1400 1300 1200 SCHEDULED RECEIPTS AVAILABLE (ON-HAND = 500) 300 300 0 0 0 0 0 NET REQUIREMENTS 1000 1300 800 1200 1400 PLANNED ORDER RECEIPTS 1000 1300 800 1200 1400 PLANNED ORDER RELEASES 1000 1300 800 1200 1400 Example: MRP Schedule • MRP Schedule for #442 Mopeds . . . Completed

  8. Example: MRP Schedule • MRP Schedule for Gas Tanks for Weeks 10 - 16, considering that: • Gross Requirements come from moped Planned-Order-Releases • There is an On-Hand balance of 600 gas tanks at the end of week 9 • There is a Scheduled Receipt for 900 tanks in week 10 • A lot-for-lot rule is used for ordering gas tanks • Safety stock of 200 gas tanks is desired • Lead time for gas tanks is two weeks

  9. ITEM: GAS TANK LT: 2 LOT SIZE: LFL SS: 200 WEEK 10 11 12 13 14 15 16 0 1200 GROSS REQUIREMENTS 1000 1300 0 800 1400 SCHEDULED RECEIPTS 900 AVAILABLE (ON-HAND = 600) NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for Gas Tanks . . . Initially

  10. ITEM: GAS TANK LT: 2 LOT SIZE: LFL SS: 200 WEEK 10 11 12 13 14 15 16 GROSS REQUIREMENTS 1000 0 1300 800 1200 1400 0 SCHEDULED RECEIPTS 900 AVAILABLE (ON-HAND = 600) 1300 300 300 0 0 0 0 NET REQUIREMENTS 1000 800 1200 1400 PLANNED ORDER RECEIPTS 1000 800 1200 1400 PLANNED ORDER RELEASES 1000 800 1200 1400 Example: MRP Schedule • MRP Schedule for Gas Tanks . . . Completed

  11. Example: MRP Schedule • MRP Schedule for Frames for Weeks 10 - 16, considering that: • Gross Requirements come from moped Planned-Order-Releases • There is an On-Hand balance of 600 frames at the end of week 9 • There is a Scheduled Receipt for 2000 frames in week 10 • The firm uses a Lot Size (multiple) of 2000 for ordering frames • No safety stock of frames is desired • Lead time for frames is 3 weeks

  12. ITEM: FRAME LT: 3 LOT SIZE: 2000 SS: 0 WEEK 10 11 12 13 14 15 16 GROSS REQUIREMENTS 1000 0 1300 800 1200 1400 0 SCHEDULED RECEIPTS 2000 AVAILABLE 600 NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for Frames . . . Initially

  13. ITEM: FRAME LT: 3 LOT SIZE: 2000 SS: 0 WEEK 10 11 12 13 14 15 16 GROSS REQUIREMENTS 1000 0 1300 800 1200 1400 0 SCHEDULED RECEIPTS 2000 AVAILABLE (ON-HAND = 600) 1600 1600 1600 300 1500 300 900 NET REQUIREMENTS 0 0 0 500 0 1100 0 PLANNED ORDER RECEIPTS 2000 2000 PLANNED ORDER RELEASES 2000 2000 Example: MRP Schedule • MRP Schedule for Frames . . . Completed

  14. Example: MRP Schedule • MRP Schedule for Engine Assemblies for Weeks 10 - 16, considering that: • Gross Requirements come from moped Planned-Order-Releases • There is an On-Hand balance of 300 engine assemblies at the end of week 9 • There is a Scheduled Receipt for 1000 engine assemblies in week 10 • The firm uses a Lot Size (multiple) of 500 for ordering engine assemblies • Safety Stock of 100 engine assemblies is desired • Lead time for engine assemblies is 1 week

  15. ITEM: ENGINE ASSEM. LT: 1 LOT SIZE: 500 SS: 100 WEEK 10 11 12 13 14 15 16 0 1200 GROSS REQUIREMENTS 1000 1300 0 800 1400 SCHEDULED RECEIPTS 1000 AVAILABLE (ON-HAND = 300) NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for Engine Assemblies . . . Initially

  16. ITEM: ENGINE ASSEM. LT: 1 LOT SIZE: 500 SS: 100 WEEK 10 11 12 13 14 15 16 0 1200 GROSS REQUIREMENTS 1000 1300 0 800 1400 SCHEDULED RECEIPTS 1000 AVAILABLE (ON-HAND = 300) 200 200 200 400 100 400 0 NET REQUIREMENTS 1100 400 1100 1000 PLANNED ORDER RECEIPTS 1500 500 1500 1000 PLANNED ORDER RELEASES 1500 500 1500 1000 Example: MRP Schedule • MRP Schedule for Engine Assemblies . . . Completed

  17. Example: MRP Schedule • MRP Schedule for Motors for Weeks 10 - 16, considering that: • Gross Requirements come from engine assembly Planned-Order-Releases • There is an On-Hand balance of 250 motors at the end of week 9 • There are no Scheduled Receipts for motors • A lot-for-lot rule is used for ordering motors • No Safety Stock of motors is desired • Lead time for motors is 1 week

  18. ITEM: MOTOR LT: 1 LOT SIZE: LFL SS: 0 WEEK 10 11 12 13 14 15 16 1500 1000 1500 GROSS REQUIREMENTS 500 SCHEDULED RECEIPTS AVAILABLE (ON-HAND = 250) NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for Motors . . . Initially

  19. ITEM: MOTOR LT: 1 LOT SIZE: LFL SS: 0 WEEK 10 11 12 13 14 15 16 1500 1000 1500 GROSS REQUIREMENTS 500 SCHEDULED RECEIPTS AVAILABLE (ON-HAND = 250) 250 250 0 0 0 0 0 NET REQUIREMENTS 1250 500 1500 1000 PLANNED ORDER RECEIPTS 1250 500 1500 1000 PLANNED ORDER RELEASES 1250 500 1500 1000 Example: MRP Schedule • MRP Schedule for Motors . . . Completed

  20. Example: MRP Schedule • MRP Schedule for Carburetors for Weeks 10 - 16, considering that: • Gross Requirements come from engine assembly Planned-Order-Releases (times 2) • There is an On-Hand balance of 150 carburetors at the end of week 9 • There are no Scheduled Receipts for carburetors • A Lot Size of 200+ is used for ordering carburetors • Safety Stock of 100 carburetors is desired • Lead time for carburetors is 2 weeks

  21. ITEM: CARBURETOR LT: 2 LOT SIZE: 2000+ SS: 100 WEEK 10 11 12 13 14 15 16 3000 2000 3000 GROSS REQUIREMENTS 1000 SCHEDULED RECEIPTS AVAILABLE (ON-HAND = 150) NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for Carburetors . . . Initially

  22. ITEM: CARBURETOR LT: 2 LOT SIZE: 2500+ SS: 100 WEEK 10 11 12 13 14 15 16 3000 2000 3000 GROSS REQUIREMENTS 1000 3000 SCHEDULED RECEIPTS AVAILABLE (ON-HAND = 150) 50 3050 50 1550 1050 1550 1550 NET REQUIREMENTS 950 1450 950 PLANNED ORDER RECEIPTS 2500 2500 2500 PLANNED ORDER RELEASES 2500 2500 2500 Example: MRP Schedule • MRP Schedule for Carburetors . . . Completed

  23. Example: MRP Schedule • MRP Schedule for Wheel Assemblies for Weeks 10 - 16, considering that: • Gross Requirements come from moped Planned-Order-Releases (times 2) • There is an On-Hand balance of 500 wheel assemblies at the end of week 9 • There is a Scheduled Receipt for 2000 wheel assemblies in week 10 • A Lot Size (multiple) of 500 is used for ordering wheel assemblies • Safety Stock of 400 wheel assemblies is desired • Lead time for wheel assemblies is 1 week

  24. ITEM: WHEEL ASSEM. LT: 1 LOT SIZE: 500 SS: 400 WEEK 10 11 12 13 14 15 16 0 2400 GROSS REQUIREMENTS 2000 2600 0 1600 2800 SCHEDULED RECEIPTS 2000 AVAILABLE (ON-HAND = 500) NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for Wheel Assemblies . . . Initially

  25. ITEM: WHEEL ASSEM. LT: 1 LOT SIZE: 500 SS: 400 WEEK 10 11 12 13 14 15 16 0 2400 GROSS REQUIREMENTS 2000 2600 0 1600 2800 SCHEDULED RECEIPTS 2000 AVAILABLE (ON-HAND = 500) 2100 100 100 0 400 0 200 NET REQUIREMENTS 2500 1600 2000 2800 PLANNED ORDER RECEIPTS 2500 2000 2000 3000 PLANNED ORDER RELEASES 2500 2000 2000 3000 Example: MRP Schedule • MRP Schedule for Wheel Assemblies . . . Completed

  26. Example: MRP Schedule • MRP Schedule for Hub Assemblies for Weeks 10 - 16, considering that: • Gross Requirements come from wheel assembly Planned-Order-Releases • There is an On-Hand balance of 100 hub assemblies at the end of week 9 • There is a Scheduled Receipt of 2400 hub assemblies in week 11 • A lot-for-lot rule is used for ordering hub assemblies • No Safety Stock of hub assemblies is desired • Lead time for hub assemblies is 1 week

  27. ITEM: HUB ASSEM. LT: 1 LOT SIZE: LFL SS: 0 WEEK 10 11 12 13 14 15 16 2500 3000 GROSS REQUIREMENTS 0 2000 0 2000 0 2400 SCHEDULED RECEIPTS AVAILABLE (ON-HAND = 100) NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for Hub Assemblies . . . Initially

  28. ITEM: HUB ASSEM. LT: 1 LOT SIZE: LFL SS: 0 WEEK 10 11 12 13 14 15 16 2500 3000 GROSS REQUIREMENTS 0 2000 0 2000 0 2400 SCHEDULED RECEIPTS AVAILABLE (ON-HAND = 100) 100 2500 0 0 0 0 0 NET REQUIREMENTS 2000 2000 3000 PLANNED ORDER RECEIPTS 2000 2000 3000 PLANNED ORDER RELEASES 2000 2000 3000 Example: MRP Schedule • MRP Schedule for Hub Assemblies . . . Completed

  29. Example: MRP Schedule • MRP Schedule for Tires for Weeks 10 - 16, considering that: • Gross Requirements come from wheel assembly Planned-Order-Releases • There is an On-Hand balance of 500 tires at the end of week 9 • There are Scheduled Receipts for 3000 and 2000 tires weeks 11 and 12, respectively • A Lot Size (multiple) of 1000 is used for ordering tires • Safety Stock of 500 tires is desired • Lead time for tires is 3 weeks

  30. ITEM: TIRE LT: 3 LOT SIZE: 1000 SS: 500 WEEK 10 11 12 13 14 15 16 2500 3000 GROSS REQUIREMENTS 0 2000 0 2000 0 3000 SCHEDULED RECEIPTS 2000 AVAILABLE (ON-HAND = 500) NET REQUIREMENTS PLANNED ORDER RECEIPTS PLANNED ORDER RELEASES Example: MRP Schedule • MRP Schedule for Tires . . . Initially

  31. ITEM: TIRE LT: 3 LOT SIZE: 1000 SS: 500 WEEK 10 11 12 13 14 15 16 2500 3000 GROSS REQUIREMENTS 0 2000 0 2000 0 3000 SCHEDULED RECEIPTS 2000 AVAILABLE (ON-HAND = 500) 0 3000 2500 500 500 500 500 NET REQUIREMENTS 1500 2500 PLANNED ORDER RECEIPTS 2000 3000 PLANNED ORDER RELEASES 2000 3000 Example: MRP Schedule • MRP Schedule for Tires . . . Completed

  32. Issues in MRP • Management Commitment • User involvement • Education and training • Selection of S/W packages • Data accuracy • Realistic MPS • Realistic lead times • Maintaining accurate BOM files

  33. Lot-Sizing in MRP • Lot-size is the quantity ordered/produced at one time • Large lots are preferred because: • Changeovers cost less and capacity greater • Annual cost of purchase orders less • Price breaks and transportation breaks can be utilized • Small lots are preferred because: • Lower inventory carrying cost • Reduced risk of obsolescence • Shorter cycle time to produce customer order

  34. Lot-Sizing Methods in MRP • Economic Order Quantity (EOQ) • does not consider quantity discounts • does not always provide the most economical approach with lumpy demands • Lot-for-Lot (LFL) • accommodates lumpy demand • Period Order Quantity (POQ) • Many others

  35. Lot-Sizing Methods in MRP The best lot-sizing method, resulting in least cost, depends on cost and demand patterns

  36. Lot-Sizing in MRP • Lot-size is the quantity ordered/produced at one time • Large lots are preferred because: • Changeovers cost less and capacity greater • Annual cost of purchase orders less • Price breaks and transportation breaks can be utilized • Small lots are preferred because: • Lower inventory carrying cost • Reduced risk of obsolescence • Shorter cycle time to produce customer order

  37. Lot-Sizing Methods • Economic Order Quantity (EOQ) • does not consider quantity discounts • does not always provide the most economical approach with lumpy demand • Lot-for-Lot (LFL) • accommodates lumpy demand • Period Order Quantity (POQ) The best method, resulting in least cost, depends on cost and demand patterns.

  38. Evaluation of MRP • Most beneficial to process-focused systems that have long processing times and complex multistage production steps • Lead times must be reliable • Must freeze MPS for some time before actual production... certain demand • Difficult to implement

  39. Closed Loop MRP Production Planning Master Production Scheduling Material Requirements Planning Capacity Requirements Planning No Feedback Realistic? Feedback Yes Execute: Capacity Plans Material Plans

  40. Closed Loop MRP Materials Management at Washburn Guitar, Inc.

  41. Manufacturing Resource Planning (MRP II) • Goal: Plan and monitor all resources of a manufacturing firm (closed loop): • Manufacturing • Marketing • Finance • Engineering • Shop-floor control • Simulation capability of the manufacturing system

  42. Enterprise Resource Planning (ERP) • ERP systems available today integrate manufacturing with other functional areas in an organization • ERP systems make it easier for management to obtain local information about performance of specific processes, bottlenecks resources, and products (or product groups), etc. • Class I ERP software packages (for large companies) include BAAN, SAP, and Oracle

  43. MRP II System MRP II System

  44. MRP I to MRP II • MRP I simply exploded demand (MPS) into required materials • MRP II became Manufacturing Resource Planning which provides a closed-loop business management system • Financial management • Shop floor control • Operations management • Simulation capability

  45. Capacity Requirements Planning (CRP)

  46. Capacity Requirements Planning (CRP) • Tests MPS for feasibility • Utilizes routings to determine labor/machine loads • If schedule feasible, recommends freezing • If schedule overloads resources, points out processes that are overscheduled

  47. Load Schedules • Compares actual labor and machine hours against available hours • Offsets schedules between successive stages of production by lead times • Provides feasible MPS and economically loaded work centers • Promotes system operating efficiency ... lowers costs!

  48. World-Class Practice • Lead times respond to conditions • Product development as levels of product structure tree • Lead times that adjust to load • MRP reports shared with customers and suppliers

More Related