1 / 24

Developmental models

Developmental models. Multivariate analysis. choleski models factor models y =  f + u genetic factor models P j = h G j + c C j + e E j common pathway independent pathway. Repeated measures. developmental models simplex models growth models. Structural Equation Model.

reidy
Download Presentation

Developmental models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Developmental models

  2. Multivariate analysis • choleski models • factor models • y =  f + u • genetic factor models • Pj = h Gj + c Cj + e Ej • common pathway • independent pathway

  3. Repeated measures • developmental models • simplex models • growth models

  4. Structural Equation Model • measurement model • relations between latent and observed variables • y =  f + u • structural equation model • relations among the latent variables • f = B f + z

  5. Longitudinal simplex pattern • correlations fall away as time between occasions increase • time 1 2 3 4 5 • time 1 1 • time 2 .69 1 • time 3 .44 .74 1 • time 4 .35 .61 .76 1 • time 5 .25 .44 .57 .73 1

  6. Simplex model • first-order auto-regressive process • each latent variable is influenced by the preceding latent variable: ft = bt ft-1 + zt • b =autoregressive coefficient • z = innovation

  7. Path diagram • units of measurement in the latent variables are the same as in the observed variables • yi = fi + ui and fi = bi fi-1 + zi

  8. First order autoregression(B matrix) • regression coefficients (b2 to b4) • 0 0 0 0 • b2 0 0 0 • 0 b3 0 0 • 0 0 b4 0 • no regression coefficient for time 1 (b1)

  9. Translation into Mx • measurement model Y = F + U • structural model: F = B* F + Z • F = B * F + Z, therefore: • F - B * F = Z, therefore: • (I - B) * F = Z, therefore: • F = (I - B)-1* Z • Y = (I - B)-1* Z + U

  10. Covariance structure • Y = (I - B)-1 * Z + U • Covariance (Y) = • (I-B)-1 * var(Z) * ((I-B)-1 )’ + var(U) • B contains autoregressive coefficients • Z contains innovations • U contains error variances • I is identity matrix

  11. Mx: Longitudinal IQ data (4 ages) • in baal\simplex • 6 rectangular datafiles (raw data): • iq4all.rec: N = 209 pairs • iq4[mzm/dzm/mzf/dzf/dos].rec • missing = -1 • 8 variables: • t1iq5 t1iq7 t1iq10 t1iq12 t2iq5 t2iq7 t2iq10 t2iq12

  12. Dutch IQ data (209 twin pairs) • tested at ages 5, 7, 10 and 12 years • not all twins participated at every occasion! • missing values: fit models to raw data • stability (subdiag=twin1, superdiag=twin2): • 5 7 10 12 • 5 1 .57 .62 .53 • 7 .70 1 .70 .61 • 10 .68 .73 1 .69 • 12 .65 .67 .76 1

  13. 2 Mx jobs • 1factor: Pfact4iq.mx • simplex: Psimp4iq.mx • input file: iq4all.rec

  14. output: variances ft = bt ft-1 + zt • var(f t) = bt2 *var(f t-1 ) + var(zt ) • variance of latent factor (twin 1): • time 1: var(f1) = var(z1) = 11.62 = 134.1 • time 2: var(f2) = 1.12*134.1 + 4.62 = 162.2 • variance of observed variable (twin 1): • time 1: var(f1) + var(u1) = 134.1 + 50.6 = 184.7 • time 2: var(f2) + var(u2) = 162.2 + 50.6 = 212.8

  15. output: covariances cov(f t ,f t-1) = bt*var(f t-1 ) • cov (f2,f3) = 1.0*162.2 = 162.2 • cov (f3,f4) = 0.8 *189.0 = 151.2 • cov(f t ,f t-2) = bt* bt-1 * var(f t-1 ) • cov (f1,f3) = 1.0 * 1.1 * 134.1 = 147.5

  16. output: correlations • cor(f t ,f t-1) = cov(f t ,f t-1)/[var(f t )*var(f t-1)] • cor (f2,f3) = 162.2 / [162.2 * 189.0] = 0.93 • cor (f3,f4) = 151.2 / [189.0 * 115.8] = 1.00 • cor (f1,f3) = 147.5 / [134.1 * 189.0] = 0.93

  17. Extension to genetic designs • For each source of variation (G, E and C (not shown here)) a simplex structure is specified

  18. parameters of the model • variances of latent factors (G, C and E) at t=0 • variances of innovations at t>0 • autoregressive coefficients (transmission) • variances of measurement errors

  19. Genetic simplex model • G(t) = bg(t) * G(t-1) + zg(t) • E(t) = be(t) * E(t-1) + ze(t) • C(t) = bc(t) * C(t-1) + zc(t) Variances of latent variables: • var(G(t)) = bg(t)2 * var(G(t-1)) + var(zg(t)) • var(E(t)) = be(t)2 * var(E(t-1)) + var(ze(t)) • var(C(t)) = bc(t)2 * var(C(t-1)) + var(zc(t))

  20. specifications • var(G1) = var(zg(1)) (innovation) • var(G(t)) = bg(t)2 * var(G(t-1)) + var(zg(t)) • cov(G(t),G(t-1)) = bg(t)*var(G(t-1))

  21. Covariance matrix (t=3, no measurement error) Genetic covariance • Var(G1) • bg2*var(G1) Var(G2) • bg2*bg3*var(G1) bg3*var(G2) Var(G3) Environmental covariance • Var(E1) • be2*var(E1) Var(E2) • be2*be3*var(E1) be3*var(E2) Var(E3)

  22. To Mx! • in baal\simplex: 5 datafiles: iq4[mzm/dzm/mzf/dzf/dos].rec • 8 variables (missing = -1) • t1iq5 t1iq7 t1iq10 t1iq12 t2iq5 t2iq7 t2iq10 t2iq12 • Mx job: guess.mx: incomplete! • For ages 5, 7 and 10 years only • Full of “mistakes” • fix, run for 3 ages, then adjust and run for 4 ages.

  23. Twin correlations (N) • 5 7 10 12 MZM .77 (42) .56 (37) .73 (38) .87 (30) DZM .53 (43) .41 (41) .54 (41) .62 (33) MZF .77 (47) .78 (42) .87 (43) .87 (36) DZF .73 (37) .50 (34) .46 (37) .60 (31) DOS .65 (39) .56 (38) .50 (37) .24 (34)

  24. Structure MX job • 3 groups to specify the genetic, unique environmental and common environmental simplex structures • 2 data groups to describe the MZ and DZ covariance matrices • MZ: G+C+E | G+C _ G+C | G+C+E / • DZ: G+C+E | 0.5@G+C _ 0.5@G+C | G+C+E /

More Related