1 / 20

SHOJIMA Kojiro The National Center for University Entrance Examinations shojima@rd.dnc.ac.jp

Asymmetric Triangulation Scaling: An asymmetric MDS for extracting inter-item dependency structure from test data. SHOJIMA Kojiro The National Center for University Entrance Examinations shojima@rd.dnc.ac.jp. Purpose of Research.

reilly
Download Presentation

SHOJIMA Kojiro The National Center for University Entrance Examinations shojima@rd.dnc.ac.jp

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Asymmetric Triangulation Scaling:An asymmetric MDS for extracting inter-item dependency structure from test data SHOJIMA Kojiro The National Center for University Entrance Examinations shojima@rd.dnc.ac.jp

  2. Purpose of Research • Development of method for visualizing inter-item dependency structure • Especially important for analyzing math test data • Proposal: ATRISCAL • Asymmetric TRIangulation SCALing • An asymmetric multidimensional scaling • Conditional correct response rate matrix is object of analysis

  3. Joint correct response rate matrix • n×nsymmetry matrix • The j-th diagonal elementP(j,j)=P(j) • Correct response rate of item j • The ij-thoff-diagonal elementP(i,j) • Joint correct response rate of items iand j • symmetryP(i,j)=P(j,i)

  4. Conditional correct response rate matrix • n×nasymmetry matrix • The j-th diagonal elementP(j|j)=P(j)/P(j)=1.0 • The ij-th off-diagonal element P(j|i)=P(i,j)/P(i) • The correct response rate of item j when item i is answered correctly • P(i|j)≠P(j|i): Usually asymmetric

  5. Multidimensional scaling (MDS) QM Q2 X15 X7 X11 X4 X12 X5 X13 X1 X2 X10 X3 X9 X14 X6 X8 Q1 O

  6. Relationship betweenitems i and j Xi Xij Xj O

  7. Relationship betweenitems i and j Xi Xij Xj O

  8. Expanded Asymmetric correct response rate matrix • The asymmetric matrix lacks information about the correct response rate of each item • So we add the imaginary n+1-th item whose correct response rate is 1.0 • P(j|n+1)=P(j,n+1)/P(n+1)=P(j) • P(n+1|j)=P(j,n+1)/P(j)=1.0

  9. Stress function

  10. δ(delta) Xi Xi Xj Well-formed triangle Not well-formed triangle The foot from O does NOT fall on line segment XiXj Xj Xij • The perpendicular foot from O falls on line segment XiXj Xij O O δij=δji=1 δij=δji=0

  11. λ(lambda) 0.5 1 0.5 1

  12. Spatial indeterminacy and fixed coordinates • Number of dimensions=3 • Coordinates of item n+1 • (xn+1=0, yn+1=0, zn+1=1) • Coordinate of item k, which has the lowest correct response rate • (xk=0, yk>0, zk) • Coordinate of item l, which has a moderate P(・|k) • (xl>0, yl, zl)

  13. Demonstration of exametrika www.rd.dnc.ac.jp/~shojima/exmk/index.htm

  14. Result of Analysis: Radial Map • Red dots • Estimated coordinates • Orange dots • Points of intersections of extensions of red line segments and the surface of the hemisphere

  15. Relationship betweenimaginary item n+1and item j • P(j)→1.0 • P(k)→0.0 Xn+1 Xj 1 P(j) Xk P(k) O

  16. Relashinship between items i and j • P(i)<P(j) • P(i|j)→1.0 • P(i|j)→0.0 Xn+1 Xj Xi O

  17. Topographic Map • The coordinates of orange points are projected onto the XY plane • Voronoi tessellation • Lift each Voronoi region by the length of the orange line segment • Separate height with different colors

  18. Mastery Maps • For each examinee

  19. Demonstration of exametrika www.rd.dnc.ac.jp/~shojima/exmk/index.htm

  20. Thank you for listening. SHOJIMA Kojiro The National Center for University Entrance Examinations shojima@rd.dnc.ac.jp

More Related