290 likes | 411 Views
Spreading dynamics on small-world networks with a power law degree distribution. Alexei Vazquez The Simons Center for Systems Biology Institute for Advanced Study. Epidemic outbreak. External source. Population. Population structure. Contact graph. N individuals
E N D
Spreading dynamics on small-world networks with a power law degree distribution Alexei Vazquez The Simons Center for Systems Biology Institute for Advanced Study
Epidemic outbreak External source Population
Population structure Contact graph N individuals pk connectivity distribution D average distance
Sexual contacts Sweden 1 year lifetime -1 -1 Sexually transmitted diseases • pk~k- , 2<<5 • Liljeros et al. Nature (2001) • Jones & Handcook, Nature (2003) • Schneeberger et al, Sex Transm Dis (2004)
Sexual contacts STD Colorado Springs HIV network Potterat et al, Sex. Transm Infect 2002 k-2 N=250 D 8
Physical contact or proximity 1 day Portland k-1.8 USA D4.37 city Eubank et al, Nature 2004 nation/world Barrat et al, PNAS 2004 N=3,880
Branching process model Generation 0 root 1 2 3 4 Spanning tree kpk/<k> k-1 pk k
Branching process model Timming dd+1 generation Generation time T Distribution G()=Pr(T) tt+T1t+T2t+T3 time
Branching process model • The process start with a node (d=0) that generates k sons with probability distribution pk. • Each son at generation 0<d<D generates k-1 new sons with probability kpk/<k>. • Nodes at generation D does not generate any son. • The generation times are independent random variables with distribution function G(). Note: Galton-Watson, Newman Bellman-Harris, Crum-Mode-Jagers
Recursive calculation T1 t=0 T2 d d+1 t=0 d
Results Reproductive number Time scale Vazquez, Phys. Rev. Lett. 2006 Constant transmission rate : G()=1-e- Incidence I(t): expected rate of new infections at time t
pk~k -, kmax~N >3, t<<t0 (t0 when N ) <3, t>>t0 (t00 when N ) Vazquez, Phys. Rev. Lett. 2006
Numerical simulations • Network: random graph with a given degree distribution. • pk~k - • Constant transmission rate • N=1000, 10000, 100000 • 100 graph realizations, 10000 outbreaks
Numerical simulations log-log linear-log e(K-1)t I(t)/N I(t)/N 1,000 10,000 100,000 tD-1e-t t t
Case study: AIDS epidemics • New York - HOM • New York - HET • San Francisco - HOM • South Africa • Kenya • Georgia • Latvia • Lithuania t3 t3 t3 Cumulative number t2 t2 exponential t (years) Szendroi & Czanyi, Proc. R Soc. Lond. B 2004
Generalizations Degree correlations Multitype
Degree correlations k’ k
Degree correlations Kk Kk k k
Degree correlations N( t)D-1e-t k’ k e(R*-1)t Vazquez, Phys. Rev. E 74, 056101 (2006)
Multi-type i=1,…,M types Ni number of type i agents p(i)k type i degree distribution eijmixing matrix D average distance Reproductive number matrix : largest eigenvalue
Multi-type Strongly connected type-networks Vazquez, Phys. Rev. E (In press); http://arxiv.org/q-bio.PE/0605001 Type 1 Type 2 Type 3 Type 4 Type-network eij eii
Generalizations Non-exponential generating time distributions
Intermediate states Vazquez, DIMACS Series in Discrete Mathematics… 70, 163 (2006)
Long time behavior: Email worms Generating time probability density Receive infected email Sent infected emails time generating time (residual waiting time) In collaboration with R. Balazs, L. Andras and A.-L. Barabasi
Email activity patterns Left: University server 3,188 users 129,135 emails sent < >~1 day E~25 days Right: Comercial email server ~1,7 millions users ~39 millions emails sent < >~4 days E~9 months T T
Prevalence: http://www.virusbtn.com I(t) I(t) I(t) Prevalence data Decay time ~ 1 year Poisson model < >~1 day - University < >~4 days - Comercial Email data E~25 days - University E~9 months - Comercial
Conclusions • Truncated branching processes are a suitable framework to model spreading processess on real networks. • There are two spreading regimes. • Exponential growth. • Polynomial growth followed by an exponential decay. • The time scale separating them is determined by D/R. • The small-world property and the connectivity fluctuations favor the polynomial regime. • Intermediate states favor the exponential regime.