520 likes | 915 Views
SONOMETRO E TUBO DI KUNDT. Laboratorio di Fisica 3. Noemi Boifava Eleonora Fava Beatrice Sterzi Andrea Trivella. Introduzione Cenni teorici generali Materiale utilizzato Sonometro: studio delle armoniche studio al variare della lunghezza studio al variare della tensione
E N D
SONOMETRO E TUBO DI KUNDT Laboratorio di Fisica 3 NoemiBoifava Eleonora Fava Beatrice Sterzi Andrea Trivella
Introduzione • Cenni teorici generali • Materiale utilizzato • Sonometro: • studio delle armoniche • studio al variare della lunghezza • studio al variare della tensione • considerazione sul coefficiente di densità lineare • Tubo di Kundt: • studio delle armoniche • confronto tra tubo chiudo ed aperto • studio al variare della lunghezza (tubo chiuso) • considerazione sulla velocità del suono • Analisi di Fourier: • cenni teorici • studio delle armoniche nel sonometro • studio di un’oscillazione casuale in una corda • studio delle armoniche nel tubo di Kundt • studio di un’onda prodotta da un flauto INDICE
INTRODUZIONE Durante questo esperimento abbiamo studiato le onde meccaniche stazionarie in una corda tesa (sonometro) e nell’aria (tubo di Kundt). Abbiamo studiato in entrambi i casi le frequenze delle armoniche. Per il sonometro abbiamo poi studiato il fenomeno al variare della tensione e della lunghezza della corda. Per quanto riguarda il tubo di Kundt abbiamo studiato il fenomeno al variare della lunghezza del tubo e abbiamo confrontato il tubo aperto con il tubo chiuso. Infine abbiamo studiato grazie a strumenti più sofisticati le onde in un mezzo.
Onde stazionarie in un mezzo CENNI TEORICI GENERALI Un’onda sinusoidale che si propaga in un mezzo può essere scritta come la parte reale di: Se l’onda verrà riflessa allora avremo un’altra onda con equazione: Le due onde interferiranno dando origine a: Imporremo a questo punto delle condizioni al contorno
In un sonometro la corda è fissata all’estremità, cioè nelle posizioni x =0, L l’ampiezza di oscillazione deve essere zero. La prima condizione viene sempre soddisfatta, la seconda si verifica se: In un tubo aperto la funzione d’onda che dobbiamo considerare è un coseno, interferendo con la riflessa si ottiene esattamente l’equazione vista in precedenza sfasata di 90°. Imponendo che l’ampiezza sia massima in x=0,L si ottiene: In un tubo chiuso bisogna imporre che in x = L l’onda abbia ampiezza minima, e quindi: con n dispari, cioè: Al variare di n otterremo diverse lunghezze d’onda e diverse frequenze. A fianco viene rappresentato il pattern d’onda nel caso del sonometro.
MATERIALE UTILIZZATO • Sonometro; • tubo di Kundt; • set di masse; • oscilloscopio, • frequenzimetro; • bilancia; • termometro. NOTA ALLA STRUMENTAZIONE DEL TUBO DI KUNDT: la strumentazione comprendeva uno speaker per la sollecitazione ed un microfono per la rilevazione del fenomeno. Facciamo notare che il microfono è sensibile alla pressione NOTA ALL’ANALISI DEGLI ERRORI: poiché il fenomeno della risonanza si osserva per un range di frequenze e non per un preciso valore, l’errore considerato su questa grandezza è di 2 Hz e non dipende dalla sensibilità degli strumenti ma è insito nel fenomeno fisico. In figura è stato rappresentato l’apparato sperimentale nel caso del sonometro
SONOMETRO RICERCA DELLE ARMONICHE ABSTRACT: Ricerca armoniche a T ed L fissati Calcolo della velocità di propagazione dell’onda Calcolo del coefficiente di densità lineare PRIMA RACCOLTA DATI • 1) RICERCA ARMONICHE: A T ed L fissate variando la frequenza dell’onda entrante abbiamo cercato le armoniche e trovato la lunghezza d’onda λ dalla relazione
Riportiamo in tabella il valore della frequenza della rispettiva armonica e il rapporto con la prima armonica. Tale valore è stato confrontato con quello teorico. • L=0,6 m • m=0,986 kg (V posto)
2) CALCOLO DELLA VELOCITA’ NEL MEZZO: La velocità con cui l’onda si propaga è data dalla relazione v= f λ. A = -5 ± 10 (Hz) B = v = 210 ± 5 (m/s) r = 0,999965 Dall’analisi dei dati si ottiene:
3) CALCOLO DEL COEFFICIENTE DI DENSITA’ LINEARE:La velocità con cui un onda si propaga dipende dalla tensione applicata e dalla massa della corda per unità di lunghezza. Da cui con T= (48,31 ± 0,05) N Da ciò si ricava che:
SECONDA RACCOLTA DATI • 1) RICERCA ARMONICHE: Abbiamo proceduto come in precedenza. • L = 0,45 m • T = (123,61 ± 0,05) N 2) CALCOLO DELLA VELOCITA’ NEL MEZZO: La velocità con cui l’onda si propaga è data dalla relazione v = fλ. La velocità è stata calcolata a partire dalle frequenze di risonanza e dalle corrispettive lunghezze d’onda.
1/λ 3) CALCOLO DEL COEFFICIENTE DI DENSITA’ LINEARE: procedendo come in precedenza si ottiene che: • CONCLUSIONI • Per quanto riguarda il punto 1) dall’analisi dei dati si vede che l’esperimento è ben riuscito nella seconda raccolta dati, per la prima raccolta dati solo un dato presenta un valore di t significativamente lontano da 1,96, questo può essere dovuto ad una vibrazione dell’apparato di strumentazione. Per quanto riguarda il coefficiente di densità lineare dedicheremo una sezione di questa presentazione.
STUDIO AL VARIARE DI L ABSTRACT: L’obiettivo principale è quello di riuscire a determinare il coefficiente di densità lineare utilizzando valori della lunghezza della corda del sonometro diversi mantenendo però costante il valore della tensione inizialmente applicata. Lo studio è stato suddiviso in due parti: Calcolo della velocità di propagazione, Calcolo del coefficiente di densità lineare. • RACCOLTA ED ELABORAZIONE DATI • 1) CALCOLO DELLA VELOCITA’ DI PROPAGAZIONE: Partendo da fλ=coste λ=2L/n, ponendoci nel caso n=2, per ogni L si ricava fL=v dove v rappresenta la velocità di propagazione dell’onda, L la lunghezza utilizzata e f la frequenza.
Rappresentiamo i dati in tabella e in grafico: Dall’analisi dei dati si ottiene che:
2) CALCOLO DEL COEFFICIENTE DI DENSITA’ LINEARE: il valore del coefficiente di densità lineare è stato stimato a partire dalla nota formula µ = T / v² , con T la tensione applicata e v la velocità di propagazione riscontrata. Essendo: • T = 48,4 ± 0,1 (N) • V = 210 ± 1(m/s)
CONCLUSIONI: Osserviamo dal coefficiente di correlazione lineare della retta che le previsioni teoriche sono state soddisfatte, ovvero abbiamo verificato l’esistenza di una dipendenza lineare della frequenza di una determinata armonica dalla lunghezza della corda tesa. Per quanto riguarda la parte sulla determinazione del coefficiente di densità lineare il risultato verrà discusso in seguito.
STUDIO A TENSIONE VARIABILE ABSTRACT: lo scopo di questa parte del nostro esperimento è stato di studiare la dipendenza della frequenza dalla tensione. CENNI TEORICI In una corda tesa si ha che: Per una qualsiasi onda vale che: Se consideriamo la seconda armonica, si ha la condizione: Esprimendo la tensione come: Da cui si ottiene una correlazione lineare la massa e il quadrato della frequenza.
RACCOLTA DATI ED ELABORAZIONE Analisi dei dati Analisi dei dati Grafico di f 2 in funzione di m
CONCLUSIONI: Come si può osservare dalla tabella l'esito dell'esperimento è stato buono, infatti abbiamo verificato la correlazione lineare tra il quadrato della frequenza e la massa. Per quanto riguarda il coefficiente di densità lineare il risultato verrà discusso in seguito. Comunque possiamo subito notare che l’errore su questo dato è alto. Questo sicuramente dipende da una cattiva raccolta dati, infatti il coefficiente r è leggermente lontano da 1 e anche dal grafico si può notare come i dati risultino non perfettamente allineati. Questo è dovuto al fatto che una data imprecisione su f porta ad una imprecisione doppia su f2. Poiché non è possibile diminuire l’imprecisione su f (poiché dipende dal fenomeno fisico in sé e non da una cattiva strumentazione) riteniamo che non sia possibile migliorare la raccolta dati.
CONSIDERAZIONI SUL COEFFICIENTE DI DENSITA’ LINEARE In tabella riportiamo i vari valori del coefficiente di densità lineare calcolati in precedenza con metodologie diverse. • Evidentemente i primi tre dati sono confidenti tra loro, il quarto dato è stato confrontato col primo (poiché restituisce il peggior valore per t), ottenendo: • Diff % = 8,33% • t = 0,93 I valori risultano confidenti ma abbastanza lontani in termini di differenza percentuale. Questo significa che l’errore alto del quarto dato* non ha permesso di individuare con maggior precisione il valore di μ . Di seguito riportiamo la media pesata: *Per la discussione dell’errore del quarto dato si rimanda alla sezione studio a tensione variabile.
TUBO DI KUNDT RICERCA DELLE ARMONICHE IN UN TUBO APERTO ABSTRACT: Ricerca armoniche Calcolo della velocità di propagazione dell’onda RACCOLTA ED ELABORAZIONE DATI • 1) RICERCA ARMONICHE:Per un tubo aperto la frequenza di risonanza si verifica quando
In tabella abbiamo riportato i dati • L = 0,9 m Dall’analisi dei dati si può dedurre che le armoniche trovate sperimentalmente sono effettivamente quelle di risonanza del tubo.
2) CALCOLO DELLA VELOCITA’ NEL MEZZO: La velocità con cui l’onda si propaga è data dalla relazione v= f λ. A = -0,4 ± 0,4 (Hz) B = v = 345,3 ± 0,2 (m/s) r= 0,99824
CONFRONTO TRA DATI: • La velocità del suono nel tubo di Kundt trovata sperimentalmente è • v =345,3 ± 0,2 m/s Confrontando questo dato con il valore teorico ricavato da: v= 331,5 m/s + 0,607T =345,5 m/s (con T= temperatura in gradi Celsius, in laboratorio erano 23°). Si ottiene: CONCLUSIONI: Come si può osservare dai parametri di confidenza l’esito dell’esperimento è stato positivo.
RICERCA DELLE ARMONICHE IN UN TUBO CHIUSO ABSTRACT: Ricerca armoniche (*) Calcolo della velocità di propagazione dell’onda RACCOLTA ED ELABORAZIONE DATI • 1) RICERCA ARMONICHE:Dall’armonica fondamentale è stato possibile determinare tutte le armoniche successive e confrontare dati teorici e sperimentali dalla formula n = fn/f 1. (*) Sono presenti solo le armoniche di numero dispari poiché le condizioni al contorno non consentono l’esistenza delle armoniche di ordine pari.
2) CALCOLO DELLA VELOCITA’ NEL MEZZO: Dalla relazione fondamentale fλ = v dove λ = 4L/n abbiamo potuto determinare la velocità di propagazione del suono mediante la retta f = (v/ 4L)n In particolare L è stato mantenuto fissato ad un valore pari a L = 0,80 ± 0,01 m. I dati sono poi stati rappresentati in un grafico.
I dati relativi al grafico sono : Si è poi confrontato il dato empirico trovato con il valore teorico della velocità del suono ricavato dalla formula: v = 331,5 + 0,607∙T = 345,5 (con T = 23° C). I risultati ottenuti sono i seguenti:
CONCLUSIONI: I risultati ottenuti sono da considerarsi significativi e soddisfacenti poiché oltre a verificare i dati teorici attesi presentano margini d’errore bassi e confidenze pienamente esaurienti. CONFRONTO TRA TUBO APERTO E CHIUSO • ABSTRACT: • Lo scopo dell’esperimento è di studiare come il tubo chiuso può essere messo in corrispondenza con quello aperto. Prima di arrivare al confronto vero e proprio, elementi essenziali da analizzare sono la ricerca delle armoniche e il calcolo della velocità del suono all’interno del tubo chiuso (L = 0,90 m). • CENNI TEORICI: • In un tubo aperto abbiamo che: • mentre in un tubo chiuso si ha che: • considerando che la velocità è la stessa è prendendo in considerazione la medesima armonica si ottiene la condizione:
RACCOLTA ED ELABORAZIONE DATI • 1) RICERCA ARMONICHE: abbiamo operato come in precedenza ottenendo i seguenti risultati: I valori trovati sono delle armoniche. 2) CALCOLO DELLA VELOCITA’ NEL MEZZO: operando come in precedenza si ottiene:
3) CONFRONTO TRA TUBO APERTO E CHIUSO: in seguito rappresentiamo le armoniche del tubo chiuso in corrispondenza alle corrispettive armoniche del tubo aperto. • CONCLUSIONI • Osserviamo che se basiamo le nostre conclusioni sulle differenze percentuali l’esito dell’esperimento è da giudicarsi positivo,tuttavia i valori di t nella parte 2) e 3) sono maggiori di 1,96. Questo è spiegabile dal fatto che l’errore molto piccolo va a falsare il valore del parametro t e dal fatto che la raccolta è un set di soli tre dati.
STUDIO A LUNGHEZZA VARIABILE ABSTRACT: lo scopo di questa parte del nostro esperimento è stato di studiare la dipendenza della frequenza della quinta armonica al variare della lunghezza del tubo. È stata scelta la quinta armonica perché più facile da individuare. • CENNI TEORICI: Per un tubo chiuso la condizione di risonanza può essere scritta (tenendo conto delle dimensioni finite) come: Per una qualsiasi onda vale che: (d indica la lunghezza del diametro) Ricavando la frequenza e considerando n=5 si ottiene: (#) Facciamo notare che la formula corretta col diametro è stata utilizzata solo in questa parte dell’esperimento poiché il diametro va a dare un contributo sempre più significativo quando la lunghezza diminuisce.
RACCOLTA ED ELABORAZIONE DATI In tabella abbiamo indicato i vari valori raccolti. Abbiamo poi graficato la frequenza f al variare del reciproco di L+0,4d indicato con D. Analisi dei dati Analisi dei dati Grafico di f in funzione di 1/D
CONCLUSIONI CONFRONTO TRA DATI In tabella abbiamo riportato il valore teorico per la velocità del suono, il valore del parametro di confidenza t e il valore della differenza percentuale. Come si può osservare dalla tabella l'esito dell'esperimento è abbastanza buono. Infatti abbiamo verificato innanzitutto la correlazione lineare che ci aspettavamo, inoltre il valore della velocità risulta abbastanza vicino a quello teorico. L’unico parametro a essere alto è la differenza percentuale, questo potrebbe essere un sintomo del fatto che le approssimazioni di bordo non sono precise (considerazione ragionevole soprattutto per corte lunghezze del tubo), altra motivazione è che l’errore così alto non ha permesso una misura più accurata e quindi più vicina al valore vero della velocità teorica.
CONSIDERAZIONI SULLA VELOCITA’ DEL SUONO In tabella riportiamo i vari valori della velocità del suono calcolati in precedenza con metodologie diverse. Ricordiamo che nel confronto col valore teorico il primo dato presenta dei buoni valori per i parametri di confidenza, il secondo e il terzo dato presentato delle differenze percentuali basse e un t alto, il quarto dato che presenta un t basso e una differenza percentuale alta. Per una trattazione più approfondita si rimanda alla singola sezione in cui il dato è stato calcolato. Abbiamo quindi calcolato la media pesata, utilizzando anche il quarto dato, poiché sebbene lontano in termini di differenza percentuale presenta un alto errore, e quindi darà un minor apporto nel calcolo della media. Possiamo essere soddisfatti della media pesata infatti la differenza percentuale risulta bassissima e il valore di t lievemente maggiore di 1,96.
ANALISIDI FOURIER CENNI TEORICI Una qualsiasi funzione può essere scritta tramite una serie infinita di funzioni trigonometriche fondamentali (per esempio di seni o coseni) tale serie viene detta trasformata di Fourier. Poiché noi considereremo solo funzioni continue avremo che la serie converge per tutti i valori compresi nell’intervallo e la sua somma vale il valore della funzione in ogni punto dell’intervallo. Se il segnale in oggetto è un segnale periodico, la sua trasformata di Fourier è un insieme discreto di valori, che in tal caso prende il nome di spettro discreto o spettro a pettine: in analisi armonica, la frequenza più bassa è detta armonica fondamentale ed è quella che ha peso maggiore nella ricomposizione finale del segnale, mentre le altre frequenze sono multiple della fondamentale. La nostra funzione potrà quindi essere scritta come: Facciamo notare che un’oscillazione reale casuale nel nostro caso dovrebbe presentare anche uno smorzamento, tuttavia il tempo di registrazione è talmente breve che tale smorzamento può essere trascurato.
STUDIO DELLE ARMONICHE NEL SONOMETRO ABSTRACT Scopo dell’esperimento è verificare che un’onda sollecitata dal driver-coil nel sonometro sia un seno perfetto. RACCOLTA DATI Di seguito abbiamo rappresentato graficamente le onde registrate con l’oscilloscopio e sempre in grafico abbiamo indicato i risultati ottenuti con l’analisi di Fourier. Tali risultati sono poi stati messi in tabella e abbiamo confrontato le frequenze ottenute con quelle già determinate in precedenza. • L = 0,45 m • T = (123,61 ± 0,05) N
CONCLUSIONI I dati ottenuti dall’analisi di Fourier sull’onda stazionaria rilevata nel sonometro sono confidenti con quelli ricavati teoricamente dal grafico dell’onda stessa. Per quanto riguarda la quarta armonica, non è stata riportata perché sollecitando il sonometro, la frequenza di risonanza risultava coincidere con quella della seconda armonica. Il terzo grafico presenta comunque un andamento abbastanza irregolare, questo può essere dovuto alla piccola ampiezza di oscillazione, tuttavia ciò non è andato a intaccare in modo significativo la buona riuscita dell’esperimento.
CORDA PIZZICATA a L=60 cm STUDIO DI UN’OSCILLAZIONE CASUALE NEL SONOMETRO Nei grafici sottostanti mostriamo l’analisi di Fourier effettuata sulle onde generate dal sonometro a seguito della sollecitazione da noi imposta alla corda. I dati seguenti si riferiscono a tre differenti raccolte tutte effettuate mantenendo la lunghezza della corda fissa a 0,6 m. Le tabelle, invece, mostrano il confronto tra ampiezza e frequenza dell’onda analizzata con l’oscilloscopio e la scomposizione ottenuta dall’analisi di Fourier. (T= (48,31 ± 0,05) N)
Infine in tabella riportiamo i valori delle ampiezze delle armoniche date dalla scomposizione di Fourier. • Il dato è stato calcolato grazie al coefficiente di densità lineare, poiché questa armonica non era stata osservata sperimentalmente. Pertanto l’errore su di essa non è 2 Hz ma 0.2.
CORDA PIZZICATA a L=35 cm Come nella slide precedente riportiamo i dati ottenuti dall’analisi di Fourier di due diverse raccolte effettuate in cui la lunghezza della corda del sonometro era fissa. L=0,350±0,005 m e tensione T = 33,18±0,05 N. I dati teorici delle armoniche fondamentali sono stati ricavati falla formula f = v∙n/2L dove v = (T/µsper)½ è la velocità del suono e n il numero dell’armonica.
CONCLUSIONI L’analisi di Fourier svolta sui dati relativi al sonometro con lunghezza della corda parti a 60 cm, mostra come le frequenze in cui l’onda è stata scomposta abbiano una bassa differenza relativa con i dati teorici, sempre inferiore al 3%. Per quanto riguarda il parametro “t” della confidenza invece, non in tutti i casi questo risulta essere inferiore alla soglia di accettabilità del 1,96. Ciò significa che per tale raccolte la discrepanza tra il dato teorico e quello sperimentale è ancora troppo grande, nonostante la soddisfacente differenza percentuale. Per quel che riguarda le ampiezze, nonostante non sia stato effettuato un confronto diretto dall’analisi dei grafici e dai dati riportati nelle tabelle, si evince che la somma delle ampiezze date dall’analisi di Fourier corrisponda circa all’ampiezza dell’onda originale. I risultati ottenuti nella seconda raccolta dati (L=35 cm) sono soddisfacenti per quanto riguarda l’ampiezza, ma non per l’analisi delle frequenze. In particolar modo dalla prima delle due tabelle si può notare che sia la differenza relativa che il parametro “t” risultano molto alti, mentre nella seconda tabella solo uno dei due dati non risulta confidente con quello teorico. Osservando la differenza tra i dati ottenuti nelle due raccolte si potrebbe concludere che nella prima si sia verificato qualche fenomeno esterno che abbia influenzato negativamente l’esperimento. Inoltre il fatto che le raccolte comprendano pochi periodi porta un’imprecisione maggiore sulla frequenza.
STUDIO DELLE ARMONICHE NEL TUBO APERTO ABSTRACT Scopo dell’esperimento è verificare che un’onda sollecitata dallo speaker nel tubo aperto sia un seno perfetto. RACCOLTA DATI Di seguito abbiamo rappresentato graficamente le onde registrate con l’oscilloscopio e sempre in grafico abbiamo indicato i risultati ottenuti con l’analisi di Fourier. Tali risultati sono poi stati messi in tabella e abbiamo confrontato le frequenze ottenute con quelle già determinate in precedenza (fp).
CONCLUSIONI Come si può osservare dai dati in tabella e dai grafici il risultato dell’esperimento è positivo. Infatti notiamo che le onde registrate sono dei semplici seni e il confronto tra le frequenze determinate con metodi diversi risulta positivo. Fanno eccezione la terza e la quarta armonica, ciò può essere dovuto ad un’interferenza esterna, per esempio ad una vibrazione della strumentazione.
STUDIO DELLE ARMONICHE NEL TUBO CHIUSO ABSTRACT Scopo dell’esperimento è verificare che un’onda sollecitata dallo speaker nel tubo chiuso sia un seno perfetto. RACCOLTA DATI Per l’analisi dei dati abbiamo proceduto come in precedenza. • 1˚ armonica
3˚ armonica • 5˚ armonica
CONCLUSIONI Come ci si aspettava dalla teoria l’analisi di Fourier di un’onda stazionaria formatasi all’interno del tubo mette in evidenza un solo “picco”, tipico delle onde che hanno come andatura un seno perfetto. Questo vuol dire che l’onda stazionaria all’interno del tubo è una sola. Confrontando poi il valore della frequenza dell’onda ricavata dall’analisi di Fourier si può dire che questa sia confidente con quella teorica estratta dal grafico dell’onda stessa. Si può inoltre vedere che sia la differenza percentuale che il t assumono valori molto piccoli (e in particolare t è sempre inferiore a 1).
STUDIO DI UN’ONDA PRODOTTA DA UN FLAUTO Una nota musicale corrisponde ad una certa frequenza (per esempio la nota la corrisponde a circa 440 Hz), tuttavia una nota può suonare in modo diverso a seconda dello strumento che la produce. Questo è dovuto al fatto che uno strumento musicale raramente produce un’onda pura ma produce un’onda periodica che è una somma di seni. In laboratorio abbiamo registrato il segnale di un flauto per poi applicargli l’analisi di Fourier in modo da trovare le armoniche successive che caratterizzano il timbro del flauto per la nota scelta. Di seguito rappresentiamo in grafico l’onda registrata e quella ottenuta dall’analisi di Fourier, in tabella abbiamo indicato i valori di ampiezza e frequenza.