1 / 15

Electron & Positron Observation

d N /dE  E -2 exp(-E/E c ). Log(dN/dE). ⇒. ↑. E c. Log(E). Annihilation of Dark Matter ( WIMP). χχ→e + ,e -. Constitutes of the Universe. Heavy Element. 重元素. 宇宙の質量構成比. 宇宙の質量構成比. 重元素. 重元素. 0.03%. 0.03%. 0.03%. 0.03%. Neutrino. ニュートリノ. 0.3%. 0.3%. ニュートリノ. ニュートリノ. 0.3%.

rhona
Download Presentation

Electron & Positron Observation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. dN/dE  E-2exp(-E/Ec) Log(dN/dE) ⇒ ↑ Ec Log(E) Annihilation of Dark Matter(WIMP) χχ→e+,e- Constitutes of the Universe Heavy Element 重元素 宇宙の質量構成比 宇宙の質量構成比 重元素 重元素 0.03% 0.03% 0.03% 0.03% Neutrino ニュートリノ 0.3% 0.3% ニュートリノ ニュートリノ 0.3% 0.3% 星 Star 0. 0.5 % % 5 星 星 0. 0. % % 5 5 暗黒エネルギー 暗黒エネルギー 暗黒エネルギー 暗黒エネルギー Hydrogen、 水素、 暗黒エネルギー 暗黒エネルギー 暗黒エネルギー 暗黒エネルギー 暗黒物質 暗黒物質 暗黒物質 暗黒物質 Helium ヘリウム 水素、 水素、 暗黒物質 暗黒物質 暗黒物質 暗黒物質 % % 4 4 ヘリウム ヘリウム % % 4 4 暗黒物質 Dark Matter 暗黒物質 暗黒物質 23% 25% 25% 25% Dark Energy 暗黒エネルギー 70% 73% Electron & Positron Observation Astrophysical Origin Production Spectrum (Power Law Distribution +Cutoff) • Propagation in the Galaxy • Diffusion Process • Energy Loss • dE/dt =-bE2 • (Syncrotron+Inverse Compton) Shock Wave Acceleration in SNR Acceleration in PWN • +/- or K+/-  +/-  e+/- ⇒ e++e- ⇒ Evolution of the Universe Dark Matter Origin ⇒ Mχ Production Spectrum (ⅰ) Monoenergetic: Direct Production of e+e- pair (ⅱ) Uniform:Production via Intermediate Particles (ⅲ) Double Peak: Production by Dipole Distribution via Intermediate Particles HEAD2010

  2. e± Propagation Diffusion Injection Energy loss by IC & synchro. ← B/C ratio For a single burst with Power law spectrum Atoyan 95, Shen 70 Kobayashi 03 HEAD2010

  3. A Naïve Result from Propagation 1 GeV Electrons 100 TeV Electrons T (age) = 2.5 X 105 X (1 TeV/E) yr R (distance) = 600 X (1 TeV/E)1/2 pc GALPROP/Credit S.Swordy • 1 TeV Electron Source: • Age < a few105 years • very young comparing to ~107 year at low energies • Distance < 1 kpc nearby source Source (SNR) Candidates : Vela Cygnus Loop Monogem Unobserved Sources? (F0: E3 x Flux at 3TeV) HEAD2010

  4. Model Dependence of Energy Spectrum and Nearby Source Effect Ec=∞、 ΔT=0 yr, Do=2x1029 cm2/s Do=5 x 1029 cm2/s Ec= 20 TeV Ec=20 TeV、 ΔT=1-104 yr Kobayashi et al. ApJ (2004) HEAD2010

  5. Calorimetric Electron Telescope (CALET) is proposed. Efforts by the new experiments for deriving the positron and electron spectra are really appreciated to open a door to new era in astroparticle physics. • We are waiting for much more study by ATIC, PAMELA, Fermi-LAT, HESS • and a forthcoming experiment in space, AMS-02. • Moreover, • We need an accurate and very-high-statistics observation for searching Dark Matter and/or Nearby Pulsars in the sub-TeV to the trans-TeV region with a detector which has following performance: • The systematic errors including GF is less than a few %. • The absolute energy resolution is as small as a few % ( ~ATIC). • The exposure factor is as large as more than 100 m2srday ( ~ FERMI-LAT). • The proton rejection power is comparable to 105 , and does not depend • largely on energies . • It should be a dedicated detector for electron observation in space. HEAD2010

  6. CALET Overview • Instrument: • High Energy Electron and Gamma- Ray • Telescope Consisted of : • - Imaging Calorimeter (Particle ID, Direction) • Total Thickness of Tungsten (W) : 3 X0 • Layer Number of Scifi Belts: 8 Layers ×2(X,Y) • - Total Absorption Calorimeter • (Energy Measurement, Particle ID) • PWO20mmx20mmx320mm • Total Depth of PWO: 27 X0 (24cm) • -Silicon Pixel Array • (Charge Measurement up in Z=1-35) • Silicon Pixel 11.25mmx11.25mmx0.5mm • 2 Layers with a coverage of 540x540 cm2 • Observation: • Electrons : 1-10,000 GeV • Gamma-rays : 10-10,000 GeV (GRB >100MeV) + Gamma-ray Bursts : 7 keV-20 MeV • Protons, Heavy Nuclei: several 10 GeV- 1000 TeV ( per particle) • Solar Particles and Modulated Particles in Solar System: 1-10 GeV (Electrons) HEAD2010

  7. CALET Performance for Electron Observation Electron 100 GeV Geometrical Factor (Blue Mark) SIA IMC Detection Efficiency TASC Electron 1 TeV Energy Resolution ~2% See Poster for details ( Akaike et al.) HEAD2010

  8. CALET System Design JEM/EF & the CALET Port The CALET mission instrument can satisfy the requirements as a standard payload in size, weight, power, telemetry etc. for launching by HTV and observation at JEM/EF. CALET Payload Star Tracker Gamma-ray Burst Monitor Calorimeter #9 Field of View (45 degrees from the zenith) Mission Data Controller Weight : 483.5 kg Power Consumption: 313W HEAD2010

  9. CALET CALET ISS HTV HTV Launching Procedure of CALET H2-B Transfer Vehicle(HTV) Pickup of CALET Approach to ISS Separation from H2-B Launching of H-IIB Rocket HEAD2010

  10. Electron Observation (5 years) Expected Anisotropy from Vela SNR ~10% @1TeV Expected Flux > 1000 827 644 Cygnus Loop Vela Monogem HEAD2010

  11. Proton and Nucleus Observation (5years) 2ry/ 1ry ratio ( B/C) • Energy dependence of diffusion constant: D ~ Eδ • Observation free from the atmospheric effect up • to several TeV/n C O CREAM Mg Ne Leaky Box Model Si Fe Nearby Source Model (Sakar et al.)

  12. Comparison of Detector Performance for Electrons CALET is optimized for the electron observation in the tran-TeV region, and the performance is best also in 10-1000 GeV. HEAD2010

  13. A New Technologyand Space Experiments after CALET The Cosmic Ray Electron Synchrotron Telescope (CREST) (ICRC 2009, S.Nutter et al.) TANSUO (J.Chang et al.) Hodoscope + BGO Calorimeter CREST payload for Ballooning: 40 days at 4 g/cm2 in Antarctica Challenging New Technology: Synchrotron X rays from electron SΩ~0.4 m2sr 2.4 m 32x32 BaF2 Crystals (40% coverage) Ex > 30 keV HEPCaT as part of OASIS (J.W. Mitchell et al.) • Very large acceptance: • Vela detection • up to 10 TeV • (~ a few TeV • for HESS ) • High Threshold: • E> 2 TeV • Poor energy resolution : • ~ a factor of two Expected electron detection efficiency Sampling Silicon-W Calorimeter + Secondary Neutron Detector SΩ~2.5 m2sr HEAD2010

  14. Summary and Future Prospect • The electron measurement over 1 TeV can bring us very important information of the origin and propagation of cosmic-rays and also of the dark matter ( yet not discussed here). • We have successfully been developing the CALET instrument for Japanese Experiment Module (Kibo) – Exposed Facility to extend the electron observation to the tans-TeV region. • The CALET has capabilities to observe the electrons up to 10 TeV , gamma-rays in 10GeV- 10TeV , proton and heavy ions in several 10 GeV - 1000 TeV, for investigation of high energy phenomena in the Universe. • The CALET mission has been approved by the System Definition Review (SDR) , and will proceed to the Phase B soon for launching in 2013. HEAD2010

  15. International Collaboration Team Waseda University: S. Torii, K.Kasahara, S.Ozawa, H.Murakami, Y.Akaike, T.Suzuki, R.Nakamura, K.Miyamoto, T.Aiba, M.Nakai, Y.Ueyama, N. Hasebe, J.Kataoka JAXA/ISAS: M.Takayanagi, H. Tomida, S. Ueno, J. Nishimura, Y. Saito H. Fuke, K.Ebisawa, M.Hareyama Kanagawa University: T. Tamura, N. Tateyama, K. Hibino, S.Okuno, T.Yuda Aoyama Gakuin University: A.Yoshida, T.Kobayashi, K.Yamaoka, T.Kotani Shibaura Institute of Technology: K. Yoshida , A.Kubota, E.Kamioka ICRR, University of Tokyo: Y.Shimizu, M.Takita Yokohama National University: Y.Katayose, M.Shibata Hirosaki University: S. Kuramata, M. Ichimura Tokyo Technology Inst.: T.Terasawa, Y. Tunesada National Inst. of Radiological Sciences: Y. Uchihori, H. Kitamura KEK: K.Ioka, N.Kawanaka Kanagawa University of Human Services: Y.Komori Saitama University: K.Mizutani Shinshu University: K.Munekata Nihon University: A.ShiomiRitsumeikan University: M.Mori NASA/GSFC: J.W.Mitchell, A.J.Ericson, T.Hams, A. A.Moissev, J.F.Krizmanic, M.Sasaki Louisiana State University: M. L. Cherry, T. G. Guzik, J. P. Wefel Washington University in St Louis: W. R. Binns, M. H. Israel, H. S. Krawzczynski University of Denver: J.F.Ormes University of Siena: K. Batkov, M.G.Bagliesi, G.Bigongiari, A.Caldaroe, R.Cesshi, M.Y.Kim, P.Maestro, P.S.Marrocchesi , V.Millucci , R.Zei University of Florence and INFN:O. Adriani, L. Bonechi,   P. Papini, E.Vannuccini University of Pisa and INFN:C.Avanzini, T.Lotadze, A.Messineo, F.Morsani Purple Mountain Observatory: J. Chang, W. Gan, J. Yang Institute of High Energy Physics:Y.Ma, H.Wang,G.Chen HEAD2010

More Related