1 / 56

Measuring the Milky Way with the VLBA

Measuring the Milky Way with the VLBA. Mark J. Reid Harvard-Smithsonian Center for Astrophysics. Fringe spacing: q f ~ l /D ~ 1 cm / 8000 km = 250 m as Centroid Precision: 0.5 q f / SNR ~ 10 m as Systematics: path length errors ~ 2 cm (~2 l ) shift position by ~ 2 q f

Download Presentation

Measuring the Milky Way with the VLBA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measuring the Milky Way with the VLBA Mark J. Reid Harvard-Smithsonian Center for Astrophysics

  2. Fringe spacing: qf~l/D ~ 1 cm / 8000 km = 250 mas Centroid Precision: 0.5 qf / SNR ~ 10 mas Systematics: path length errors ~ 2 cm (~2 l) shift position by ~ 2qf Relative positions (to QSOs): DQ ~ 1 deg (0.02 rad) cancel systematics: DQ*2qf ~ 10 mas Measuring the Milky Way with the VLBA Comparableto GAIA & SIM

  3. Where is the Galactic Center? Sun Harlow Shapley Galactic Center Globular clusters based on Cepheid distances Projected onto Galactic Plane

  4. Galactic Center Stellar Orbits VLT: 2 mm • M = 4 x 106 Msun • R < 50 AU • Den. > 1017 Msun/pc3 5” Ghez et al / Genzel et al 0.04” What can radio observations tell us?...

  5. Where is the Galactic Center? VLA l = 6 cm 1.3 cm 5” Zhao Jun-Hui Sgr A*

  6. Where is the Galactic Center? Combined IR + Radio astrometry shows Sgr A* at focal position of stellar orbits (+/-10 mas) Stars move fast. Does Sgr A* move fast?

  7. The Proper Motion of Sgr A* 2 Ref. QSOs: DQ ~ 0.7o Expect to see effect of Sun’s orbit around Galactic Center: 6 mas/yr along Gal. Plane Galactic Plane 90 cm VLA image: LaRosa et al

  8. Proper Motion of Sgr A* • Parallel to Galactic Plane: 6.379 (+/- 0.024) mas/yr Qo/Ro = 29.5 km/s / kpc • Perpendicular to Gal. Plane: 7.2 km/s motion of Sun • Could re-define Galactic Plane Now: HI & Sun in plane New: LSR orbit & Sgr A* in plane • Sgr A*’s motion ^ to Gal. Plane -0.4 +/- 0.9 km/s ! IAU Gal. Plane fit to data Reid & Brunthaler (2004)

  9. SMBH “Brownian motion” • ~106 stars orbiting Sgr A* • Calculate orbit segments • Stellar c.o.m. changes • Sgr A* moves to keep total system c.o.m. constant • Smi << MSgrA. … MV ~ mv • Smi ~ MSgrA. … MV2 ~ mv2

  10. Latest Results: Sgr A* Proper Motion • IR Stellar Orbits: • MIR ~ 4 x 106 Msun • R < 50 AU • Radio Observations: • Sgr A* motionless  • M > 10% of MIR • Observed size: • R < 0.5 AU • IR + Radio data combined: • Dark mass = luminous source • Density > 1022 Msun/pc3

  11. Must Sgr A* be a SMBH? Object Density Method Mass within Radius (Msun/pc3) (Msun) M 87 106 HST 3x109 7 pc NGC 4258 1010 VLBA : H2O4x107 0.1 pc Sgr A* 1017 IR Star orbits 4x106 50 AU Sgr A* >1022 VLBA p.m. >4x105 0.5 AU SMBH 1024 3RSch4x106 3*0.08 AU 3RSch =30 mas @ 8 kpc VLBI (JCMT/SMA-ALMA-LMT-SMT-CARMA) @ 0.8 mm 20 mas News Flash: Fringes: HawaiiArizona @ 1.3mm (60 mas) ! Doeleman et al

  12. Milky Way Viewed From Inside Sgr A* Thomas Lucas Productions, Inc. (www.tlproductions.com)

  13. Lunar Parallax 7000 km baseline Hipparchus (189 BC) Pete Lawrence’s Digitalsky: http://www.digitalsky.org.uk

  14. Geocentric • … Pythagoras, Aristotle … • Ptolemy • Heliocentric • Aristarchus (ca. 250 BC) • Copernicus • Stellar Parallax: clear test of heliocentric cosmology Geocentric vs. Heliocentric Cosmology

  15. From: Galileo Galilei & Johannes Kepler To: Cosimo II de’ Medici, Grand Duke of Tuscany Re: Funds for a bigger telescope to measure stellar parallax “If the Earth moves around the Sun, we should see stellar parallax!” Grand Duke’s advisors point out: Referee 1) Che’ idea pazzesca! (What a crazy idea !) Referee 2) Even if the idea were correct, we don’t know how far away the stars are; so there is no way to estimate the probability of success. Referee 3) Null result doesn’t prove or disprove anything. Excerpts from a 1609 Proposal:

  16. Centuries of failure…until 1838 • Friedrich Wilhelm Bessel • using a Fraunhofer telescope • 61 Cygni: p = 0.314” • (p = 0.287”) • Followed closely by • Thomas Henderson (a Centuri) • Wilhelm Struve (Vega) Parallax: The Race to Measure the Cosmos1 Friedrich Wilhelm Bessel 1Alan Hirshfeld 2001 (W.H. Freeman & Co., NY)

  17. 118,000 stellar parallaxes sp ~ 0.8 mas 10% accuracy at 125 pc… mapped solar neighborhood Next great space missions: GAIA & SIM: ~10 mas HIPPARCOS (Perryman et al 1997 A&A 323 49)

  18. Practical Lessons • Narrow the angle: • finding nearby calibrators • Measure atmospheric delays: • “geodetic-blocks” or GPS • Measure reference position:

  19. Finding Background Calibrators • Select candidates from NVSS • <1.5 degrees on sky from target • >20 mJy • Unresolved (<20”) • Observe with VLA at X- and K-band and require • unresolved • synchrotron spectral index (a < -0.5) • usually find 1 – 3 good sources • Re-observe in A or B config to get position (<30 mas)

  20. Typical Background Sources • Sn = 5  80 mJy • nearly point-like

  21. Effects of Atmospheric Delay Errors • Simulations: • 1 cm zenith path errors • 4 VERA stations • PA of target w.r.t. reference Honma, Tamura & Reid (2008)

  22. Obs ~15 sources over sky • large ZA differences • 60 ICRF sources • positions <1 mas • >1000 obs, little structure • Trial schedule • skip randomly through list • generate fake data and fit • Pick best of ~1000 trails “Geodetic Block” Atmospheric Calibration

  23. Geodetic-Block vs. GPS Calibration Geo-block GPS Honma, Tamura & Reid (2008)

  24. Reference Source Position Crucial 1) Include 1 source with mas position in p-ref’ing OR 2) Fully calibrate data (except p-ref’ing) Make dirty image Estimate position from “speckles”

  25. Reference Source Phases • Can get “raw’ phases within few turns over day • Similar to VLA - A data 

  26. Parallax 1.01

  27. Orion Nebular Cluster Parallax D = 414 +/- 7 pc 389 +/- 22 pc Sandstrom et al (2007) 437 +/- 19 pc Hirota et al (2007) 414 +/- 7 pc Menten et al (2007) Menten, Reid, Forbrich & Brunthaler (2007)

  28. Milky Way Parallaxes Distance estimates: Kinematic = 4.3 kpc Photometric = 2.2 kpc (R. Humphreys 1970’s) W3(OH) T. Megeath (Spitzer Space Telescope)

  29. Kinematic Distances • Doppler shift: • VDop = V - Vsun • Model (Gal. Rotation): • Vmod(Ro,Qo,l,D) • Adjust D to match • Vmod to VDop V V { D Qo Ro

  30. W3OH Parallax p = 0.512 +/- 0.010 mas Xu, Reid, Zheng & Menten (2006)

  31. W3OH Parallax • Dphoto ~ Dparallax • Dk way off • In Perseus Arm, not in Outer Arm • Large peculiar V Schematic Model of Milky Way: Taylor-Cordes / Georgelin & Georgelin

  32. S 252 Parallax Maser 2 3 QSOs; Maser 1 p = 0.480 +/- 0.010mas Reid et al (2008)

  33. Methanol Maser Parallaxes Kinematic distances (Dk): Problem: Dk > Dp Partial fix: Ro < 8.5 kpc and/or Qo > 220 km/s Sgr A* p.m. requires Qo/Ro = 29.5 km/s/kpc = 236 / 8.0 = 251 / 8.5 Brunthaler, Menten, Moscadelli, Reid, Xu, & Zheng Honma et al; Hachisuka et al

  34. Peculiar Motions of Star Forming Regions • In rotating frame: Ro = 8.5 kpc Qo = 220 km/s • Clear systematic motions • Update Galaxy model: • Ro = 8.5 kpc • Qo = 251 km/s • Systematic motions smaller, but significant

  35. Peculiar Motions of Star Forming Regions Galactic model: Ro = 8.5 kpc Qo = 251 km/s & Solar Motion: U = 8 km/s V = 18 km/s W = 10 km/s Residual motions considerably smaller

  36. Solar Motion • Hipparcos & VLBA • U:  Gal. Center • W: North Gal. Pole Maser parallax/P.M. Sgr A* proper motion Dehnen & Binney (1998) Hipparcos data (black) Excellent agreement between Hipparcos and VLBA

  37. Solar Motion V Gal. Rot. “Asymmetric Drift:” V appears larger when measured against older stars with higher dispersion Asymmetric Drift Late B-type Maser p & p.m. Dehnen & Binney (1998) Hipparcos data in black Massive stars born rotating ~13 km/s slower than Galaxy spins; as they age, first speed up and then slow down again.

  38. Massive Star Birth • Possible Sequence: • Molecular cloud in circular orbit • Hit by Spiral shock • Goes into elliptical orbit (near apocenter) • Compression triggers star formation

  39. The Next 5 Years • Ro & Qo from parallax & p.m. data with 3% accuracy • Map of Milky Way spiral structure • Critically test spiral density wave theory

  40. Extreme Supergiants Extreme red supergiants with L  106 Lsun “Fabulous 4”: NML Cyg, S Per, VY CMa, VX Sgr H2O and SiO masers in circumstellar envelopes VY CMa 0.4 < D < 1.8 kpc Association with NGC 2362  D = 1.5 kpc (M-S fitting) Parallax measured to be 1.1 kpc... L = 3 x 105 Lsun (quite reasonable) NGC 2362 cluster closer than thought

  41. Local Group Proper Motions M33 • 1920s van Maanen claimed to see M33 spin! • mas/yr motions  Spiral nebulae nearby (Galactic) • Hubble argued more distant (extra-galactic) • van Maanen’s error not found

  42. Extragalactic Proper Motions M33 • Parallax accuracy: sD ~ 10% at 10 kpc can’t do galaxies yet • Proper motion: same techniques, but sm ~ T-3/2 • M33 & IC10 1) see spin (van Maanen) 2) see galaxy’s motion Andreas Brunthaler’s PhD Thesis

  43. Extragalactic Proper Motions • M33/IC133 – M33/19 masers • VLBA: Dmx = 30 +/- 2, Dmy = 10 +/- 5 mas/yr • HI: Dvx = 106 +/-20, Dvy = 35 +/- 20 km/s • D = 750 +/- 50 +/- 140 kpc • Improvements in Rotation Model & 3rd maser source: • sD < 10% possible sm sv Brunthaler, Reid & Falcke

  44. Extragalactic Proper Motions • M31’s motion unknown • Critical for L.G. dynamics

  45. Tidal Heating of M33 • Try M31 proper motions; then calculate orbits • Tidal heating of M33 for trial proper motions of M31: mM31 = (100,-100) km/s ( -50, -50) km/s ( 0, 0) km/s mM31 ~ 0 km/s M33 destroyed mM31 ~100 km/s M33 OK Loeb, Reid, Brunthaler & Falcke (2005)

  46. NGC 4258 • Seyfert galaxy • H2O masers in an edge-on, sub-parsec disk • Rotation speed ~1000 km/s • M ~ 3 x 107 Msun • Geometric model  D = 7.2 +/- 0.5 Mpc • Used by Hubble Key Project to re-calibrate Cepheid PL relation Herrnstein, Moran, Greenhill et al (1999)

  47. AGN Maser Distance Measurements A = V2 / R R = D q \ D = V2 / A q High Velocity Maser Map Red high-velocity masers V R = D q Blue high-velocity masers Drift of systemic masers over time Systemic velocity masers

  48. Maser Distance Measurements (2) D = V2 / Aq V q

  49. Maser Cosmology ProjectBraatz, Condon, Greenhill, Henkel, Lo & Reid • Goal: Ho accurate to 3%; constain Dark Energy Eq. of State • How: Geometric Distances to H2O masers in Hubble Flow GBT finds masers VLBA maps them

More Related