340 likes | 352 Views
10 m. Human height. 1 m. Length of some nerve and muscle cells. 0.1 m. Unaided eye. Chicken egg. 1 cm. Fig. 6-2. Frog egg. 1 mm. 100 µm. Most plant and animal cells. Light microscope. 10 µm. Nucleus. Most bacteria. Mitochondrion. 1 µm. Electron microscope. Smallest bacteria.
E N D
10 m Human height 1 m Length of some nerve and muscle cells 0.1 m Unaided eye Chicken egg 1 cm Fig. 6-2 Frog egg 1 mm 100 µm Most plant and animal cells Light microscope 10 µm Nucleus Most bacteria Mitochondrion 1 µm Electron microscope Smallest bacteria 100 nm Viruses Ribosomes 10 nm Proteins Lipids 1 nm Small molecules Atoms 0.1 nm
Surface area increases while total volume remains constant 5 Fig. 6-8 1 1 Total surface area [Sum of the surface areas (height width) of all boxes sides number of boxes] 150 750 6 Total volume [height width length number of boxes] 1 125 125 Surface-to-volume (S-to-V) ratio [surface area ÷ volume] 6 1.2 6
Fimbriae Nucleoid Ribosomes Fig. 6-6 Plasma membrane Cell wall Bacterial chromosome Capsule 0.5 µm Flagella (a) A typical rod-shaped bacterium (b) A thin section through the bacterium Bacillus coagulans (TEM)
Nuclear envelope ENDOPLASMIC RETICULUM (ER) NUCLEUS Nucleolus Rough ER Smooth ER Flagellum Chromatin Centrosome Fig. 6-9a Plasma membrane CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Ribosomes Microvilli Golgi apparatus Peroxisome Mitochondrion Lysosome
Rough endoplasmic reticulum Nuclear envelope Nucleolus NUCLEUS Chromatin Smooth endoplasmic reticulum Ribosomes Fig. 6-9b Central vacuole Golgi apparatus Microfilaments Intermediate filaments CYTO- SKELETON Microtubules Mitochondrion Peroxisome Chloroplast Plasma membrane Cell wall Plasmodesmata Wall of adjacent cell
Microtubule Fig. 6-20 Microfilaments 0.25 µm
Table 6-1 10 µm 10 µm 10 µm Column of tubulin dimers Keratin proteins Actin subunit Fibrous subunit (keratins coiled together) 25 nm 8–12 nm 7 nm Tubulin dimer
Tight junction Tight junctions prevent fluid from moving across a layer of cells 0.5 µm Fig. 6-32 Tight junction Intermediate filaments Desmosome Desmosome Gap junctions 1 µm Extracellular matrix Space between cells Gap junction Plasma membranes of adjacent cells 0.1 µm
TECHNIQUE RESULTS (a) Brightfield (unstained specimen) Fig. 6-3ab 50 µm (b) Brightfield (stained specimen)
RESULTS TECHNIQUE (c) Phase-contrast Fig. 6-3cd (d) Differential-interference- contrast (Nomarski)
RESULTS TECHNIQUE (e) Fluorescence Fig. 6-3e 50 µm
TECHNIQUE RESULTS 1 µm Cilia (a) Scanning electron microscopy (SEM) Fig. 6-4 Longitudinal section of cilium Cross section of cilium (b) Transmission electron microscopy (TEM) 1 µm
Nuclear envelope ENDOPLASMIC RETICULUM (ER) NUCLEUS Nucleolus Rough ER Smooth ER Flagellum Chromatin Centrosome Fig. 6-9a Plasma membrane CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Ribosomes Microvilli Golgi apparatus Peroxisome Mitochondrion Lysosome
Nucleus 1 µm Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Fig. 6-10 Nuclear pore Pore complex Rough ER Surface of nuclear envelope Ribosome 1 µm 0.25 µm Close-up of nuclear envelope Pore complexes (TEM) Nuclear lamina (TEM)
Smooth ER Nuclear envelope Rough ER Fig. 6-12 ER lumen Cisternae Transitional ER Ribosomes Transport vesicle 200 nm Rough ER Smooth ER
Cytosol Endoplasmic reticulum (ER) Free ribosomes Fig. 6-11 Bound ribosomes Large subunit Small subunit 0.5 µm Diagram of a ribosome TEM showing ER and ribosomes
Smooth ER Nuclear envelope Rough ER Fig. 6-12 ER lumen Cisternae Transitional ER Ribosomes Transport vesicle 200 nm Rough ER Smooth ER
cis face (“receiving” side of Golgi apparatus) 0.1 µm Cisternae Fig. 6-13 trans face (“shipping” side of Golgi apparatus) TEM of Golgi apparatus
1 µm Nucleus Vesicle containing two damaged organelles 1 µm Fig. 6-14 Mitochondrion fragment Peroxisome fragment Lysosome Digestive enzymes Lysosome Lysosome Plasma membrane Peroxisome Digestion Food vacuole Digestion Mitochondrion Vesicle (a) Phagocytosis (b) Autophagy
Central vacuole Fig. 6-15 Cytosol Central vacuole Nucleus Cell wall Chloroplast 5 µm
Nucleus Rough ER Fig. 6-16-1 Smooth ER Plasma membrane
Nucleus Rough ER Fig. 6-16-2 Smooth ER cis Golgi Plasma membrane trans Golgi
Nucleus Rough ER Fig. 6-16-3 Smooth ER cis Golgi Plasma membrane trans Golgi
1 µm Nucleus Vesicle containing two damaged organelles 1 µm Fig. 6-14 Mitochondrion fragment Peroxisome fragment Lysosome Digestive enzymes Lysosome Lysosome Plasma membrane Peroxisome Digestion Food vacuole Digestion Mitochondrion Vesicle (a) Phagocytosis (b) Autophagy
Rough endoplasmic reticulum Nuclear envelope Nucleolus NUCLEUS Chromatin Smooth endoplasmic reticulum Ribosomes Fig. 6-9b Central vacuole Golgi apparatus Microfilaments Intermediate filaments CYTO- SKELETON Microtubules Mitochondrion Peroxisome Chloroplast Plasma membrane Cell wall Plasmodesmata Wall of adjacent cell
Nuclear envelope ENDOPLASMIC RETICULUM (ER) NUCLEUS Nucleolus Rough ER Smooth ER Flagellum Chromatin Centrosome Fig. 6-9a Plasma membrane CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Ribosomes Microvilli Golgi apparatus Peroxisome Mitochondrion Lysosome
Intermembrane space Outer membrane Fig. 6-17 Free ribosomes in the mitochondrial matrix Inner membrane Cristae Matrix 0.1 µm
Rough endoplasmic reticulum Nuclear envelope Nucleolus NUCLEUS Chromatin Smooth endoplasmic reticulum Ribosomes Fig. 6-9b Central vacuole Golgi apparatus Microfilaments Intermediate filaments CYTO- SKELETON Microtubules Mitochondrion Peroxisome Chloroplast Plasma membrane Cell wall Plasmodesmata Wall of adjacent cell
Fig. 6-18 Ribosomes Stroma Inner and outer membranes Granum 1 µm Thylakoid
Secondary cell wall Primary cell wall Middle lamella Fig. 6-28 1 µm Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata
Outer microtubule doublet Plasma membrane 0.1 µm Dynein proteins Central microtubule Radial spoke Protein cross-linking outer doublets Microtubules Fig. 6-24 (b) Cross section of cilium Plasma membrane Basal body 0.5 µm 0.1 µm (a) Longitudinal section of cilium Triplet (c) Cross section of basal body
Microtubule doublets ATP Dynein protein Fig. 6-25 (a) Effect of unrestrained dynein movement ATP Cross-linking proteins inside outer doublets Anchorage in cell (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion
Direction of swimming Fig. 6-23 (a) Motion of flagella 5 µm Direction of organism’s movement Power stroke Recovery stroke (b) Motion of cilia 15 µm
Centrosome Microtubule Fig. 6-22 Centrioles 0.25 µm Microtubules Longitudinal section of one centriole Cross section of the other centriole