520 likes | 544 Views
Learn about designing combinational systems using modules like Multiplexers and Shift Registers. Implement switching functions with MUXes and understand gate networks. Explore applications and analysis techniques.
E N D
W’05 CS M51A/EE M16 Winter’05 Section 1 Logic Design of Digital SystemsLecture 15 March 9 Yutao He yutao@cs.ucla.edu 4532B Boelter Hall http://courseweb.seas.ucla.edu/classView.php?term=05W&srs=187154200
Outline • Recap - Combinational macro modules • Decoders • Encoders • Shifters • Combinational macro modules • Multiplexers • Demultiplexers • Chapter 11 Sequential Modules • Registers • Shift registers
Combinational Systems Design Analysis Module networks (DEC/ENC, MUX/DEMUX, Shifter.) Chapter 9 Gate networks (AND, OR, NAND, etc.) Chapters 2-6 Chapter 9 - Overview • Basic Questions: • What are each module’s property? • inputs, outputs, functions (high-level and binary level) • How to implement it using logic gates? • How to design a comb. system using these modules? • How to analyze a comb. system using these modules?
E EN x0 0 1 x1 Data Output 2n-Input Multiplexer Data Inputs z x2n-1 2n-1 n-1 0 sn-1 Selection Inputs s0 Multiplexer (MUX)
Multiplexer - Specification High-Level Binary-Level
Multiplexer - Implementation (1) Implementation of MUX with AND/OR gates
Multiplexer - Implementation (2) Implementation of MUX with transmission gates
Multiplexer (Tree) Networks s3 s2 s1 s0 = 1001 s = 9 0 1 1 0 z = x9
Applications of MUXes n-bit Simple Shifter
Applications of MUXes (Cont’d) 4-bit Right-3 Unidirectional Shifter
E EN x0 0 1 x1 2n-Input Multiplexer z x2n-1 2n-1 n-1 0 sn-1 s0 Design Using MUXes • Key observations: • A 2n-Input MUX corresponds to a n-input switching function. • Data outputs store output values of the switching function. • Selection inputs correspond to the inputs of the switching function. • A 2n-Input MUX stores the truth table of a n-input switching function. • Basic Idea: • MUXes are Universal Set • assuming constants 0 and 1 are available
x y carry_in sum carry-out 1-Bit Full Adder x y Cin S Cout 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 Example 9.12 - One-Bit Full Adder • Need two 8-Input MUXes
x y Cin S Cout E = 1 E = 1 0 0 0 0 0 EN EN 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 2 2 Cout 8-Input Multiplexer 1 0 0 1 0 8-Input Multiplexer 3 3 0 1 s 1 0 1 0 1 4 4 1 0 1 1 0 0 1 5 5 0 1 1 1 1 1 1 6 6 0 1 1 1 7 7 0 0 2 1 2 1 x y x y Cin Cin One-Bit Full Adder (Cont’d)
Design Using MUXes with Small Sizes • Is it possible to design a n-input switching function using a 2m-input MUX, where m < n? • The answer is Yes! • How? • Basic idea: • Use data inputs of a MUX to store variables • Basic approaches: • Truth table • K-Map • Boolean algebra
E = 1 EN Cin 0 x y Cin S 1 C’in 4-Input MUX s 0 0 0 0 C’in 2 0 0 1 1 3 Cin 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 x y 1 1 0 0 1 1 1 1 1-Bit FA Revisited: Using Truth Table • Uses 4-input Muxes Cin C’in C’in Cin
E = 1 x y Cin Cout 0 0 0 0 EN 0 0 0 0 1 0 1 Cin 4-Input MUX 0 1 0 0 Cout Cin 2 0 1 1 1 3 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 x y Using Truth Table (Cont’d) 0 Cin Cin 1
0 1 1 0 0 1 1 0 E = 1 x EN Cin 0 1 C’in y 4-Input MUX Cin s C’in 2 3 Cin 0 1 3 2 4 5 7 6 1 0 x x y y 1-Bit FA Revisited: Using K-Map Cin C’in C’in Cin
0 0 0 1 1 0 1 1 x y Cin E = 1 0 1 3 2 4 5 7 6 EN 0 0 1 Cin x 4-Input MUX Cout Cin 2 3 1 y 1 0 x y Using K-Map (Cont’d) 0 Cin Cin 1
E = 1 m0 m1 m2 m3 EN Cin 0 1 C’in 4-Input MUX s C’in 2 3 Cin 1 0 x y 1-Bit FA: Using Boolean Algebra S = x’y’Cin + x’yC’in + xy’C’in + xyCin = (x’y’)Cin + (x’y)C’in + (xy’)C’in + (xy)Cin
m1 m2 m3 E = 1 EN 0 0 1 Cin 4-Input MUX Cout Cin 2 3 1 1 0 x y Using Boolean Algebra (Cont’d) Cout = x’yCin + xy’Cin + xyC’in + xyCin = (x’y)Cin + (xy’)Cin + (xy)(C’in + Cin) = (x’y)Cin + (xy’)Cin + (xy)
E EN z = x0s’+x1s x0 E = 1 0 z 2-Input MUX EN 1 x1 0 1 z 2-Input MUX 0 0 1 E = 1 s 0 EN 0 0 z x 2-Input MUX x1 1 0 x0 Design Using Network of 2-Input MUXes AND gate z = x0 x1 NOT gate z = x’
E EN f(xn-1, …, x1, 0) 0 f(xn-1, …, x1, x0) 2-Input MUX f(xn-1, …, x1, 1) 1 0 x0 Shannon Theorem • The Formula: • f(xn-1, …, x1, x0) = f(xn-1, …, x1, 0) x’0+ f(xn-1, …, x1, 1) x0 • The idea: • A function with more inputs can be decomposed into two functions with fewer inputs. • The Application: • A n-input switching function can be implemented with 2-input MUXes by repeatedly applying the Shannon Theorem.
Example 6.8 • Implement the following function with 2-Input MUXes: • f(x3, x2, x1, x0) = x3( x1+ x2x0) • Decomposition: • The first level: • f(x3, x2, x1, 0) = x3 x1 • f(x3, x2, x1, 1) = x3 (x1 + x2) • The second level: • f(x3, x2, 0, 0) = 0 • f(x3, x2, 0, 1) = x3x2 • f(x3, x2, 1, 0) = x3 • f(x3, x2, 1, 1) = x3
0 0 0 0 x3 1 f 0 0 0 0 f 0 1 x1 0 x3 1 1 x3 0 0 1 0 0 0 0 x0 x3 x3 1 x1 0 x2 1 x0 0 x2 x1 Example 6.8 (Cont’d) • The third level: • f(x3, 0, 0, 0) = 0, f(x3, 1, 0, 0) = 0 • f(x3, 0, 0, 1) = 0, f(x3, 1, 0, 1) = x3 • f(x3, 0, 1, 0) = x3,f(x3, 1, 1, 0) = x3 • f(x3, 0, 1, 1) = x3,f(x3, 1, 1, 1) = x3
E EN n-1 0 sn-1 Selection Inputs s0 Demultiplexer (DEMUX) y0 0 1 y1 Data Inputs 2n - Output Demultiplexer Data Output x 2n-1 y2n-1
Sequential Systems Design Analysis Module networks (Register, Shift Register, Counter) Chapter 11 Flip-Flops (D, JK, SR, T FFs, etc.) Chapters 7-8 Chapter 11 Sequential Modules • Basic Questions: • What are each module’s property? • inputs, outputs, functions (high-level and binary level) • How to implement it using FFs and logic gates? • How to design a sequential system using these modules? • How to analyze a sequential system using these modules?
Design Using Registers • Example 11.1
LD Y1 y1 2-Bit Register Y0 y0 CLR CLK Example 11.1- Using Register x When x = 1 0
Shift Registers m CLK Shift Register CTL n • Basic Types: • Serial In/Serial Out (SI/SO): m=n=1 • Serial In/Parallel Out (SI/PO): m=1, n> 1 • Parallel In/Serial Out (PI/SO): m>1, n=1 • Parallel In/Parallel Out (PI/PO): m, n > 1
Present state s(t) = 0101, data input x(t)=1110 PI/PO Shift Register Control
Applications of Shift Registers • Serial interconnection of two systems
Applications of Shift Registers (Cont’d) • Bit-serial operations
Design Using Shift Registers • For finite-memory sequential systems, shift registers can be used as the state register: • Example 11.2: • z(t) = 1 whenever x(t) • x(t-8) = 1
Design Using Shift Registers (Cont’d) • Shift registers are handy for implementing pattern detectors • Example 11.3 • Design a pattern detector that detects 011101101