1 / 26

Protein Structure Informatics using Bio.PDB

Protein Structure Informatics using Bio.PDB. BCHB524 2013 Lecture 12. Review Python modules Biopython Sequence modules Biopython’s Bio.PDB Protein structure primer / PyMOL PDB file parsing PDB data navigation: SMCRA Examples. Outline. Python Modules Review.

ringo
Download Presentation

Protein Structure Informatics using Bio.PDB

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Protein StructureInformaticsusing Bio.PDB BCHB5242013Lecture 12 BCHB524 - 2013 - Edwards

  2. Review Python modules Biopython Sequence modules Biopython’s Bio.PDB Protein structure primer / PyMOL PDB file parsing PDB data navigation: SMCRA Examples Outline BCHB524 - 2013 - Edwards

  3. Python Modules Review • Access the program environment • sys, os, os.path • Specialized functions • math, random • Access file-like resources as files: • zipfile, gzip, urllib • Make specialized formats into “lists” and “dictionaries” • csv (, XML, …) BCHB524 - 2013 - Edwards

  4. BioPython Sequence Modules • Provide “sequence” abstraction • More powerful than a python string • Knows its alphabet! • Basic tasks already available • Easy parsing of (many) downloadable sequence database formats • FASTA, Genbank, SwissProt/UniProt, etc… • Simplify access to large collections of sequence • Access by iteration, get sequence and accession • Other content available as lists and dictionaries. • Little semantic extraction or interpretation BCHB524 - 2013 - Edwards

  5. Biopython Bio.SeqIO • Access to additional information • annotations dictionary • features list • Information, keys, and keywords vary with database! • Semantic content extraction (still) up to you! import Bio.SeqIOimport sysseqfile = open(sys.argv[1])for seq_record in Bio.SeqIO.parse(seqfile, "uniprot-xml"):print"\n------NEW SEQRECORD------\n"print"seq_record.annotations\n\t",seq_record.annotationsprint"seq_record.features\n\t",seq_record.featuresprint"seq_record.dbxrefs\n\t",seq_record.dbxrefsprint"seq_record.format('fasta')\n",seq_record.format('fasta')seqfile.close() BCHB524 - 2013 - Edwards

  6. …a linear sequence of amino-acids, after transcription from DNA, and translation from mRNA. Proteins are… BCHB524 - 2013 - Edwards

  7. Proteins are… • …3-D molecules that interact with other (biological) molecules to carry out biological functions… • DNA Polymerase Hemoglobin BCHB524 - 2013 - Edwards

  8. Protein Data Bank (PDB) • Repository of the 3-D conformation(s) / structure of proteins. • The result of laborious and expensive experiments using X-ray crystallography and/or nuclear magnetic resonance (NMR). • (x,y,z) position of every atom of every amino-acid • Some entries contain multi-protein complexes, small-molecule ligands, docked epitopes and antibody-antigen complexes… BCHB524 - 2013 - Edwards

  9. Visualization (PyMOL) BCHB524 - 2013 - Edwards

  10. Biopython Bio.PDB • Parser for PDB format files • Navigate structure and answer atom-atom distance/angle questions. • Structure (PDB File) >> Model >> Chain >> Residue >> Atom >> (x,y,z) coordinates • SMCRA representation mirrors PDB format BCHB524 - 2013 - Edwards

  11. SMCRA Data-Model • Each PDB file represents one “structure” • Each structure may contain many models • In most cases there is only one model, index 0. • Each polypeptide (amino-acid sequence) is a “chain”. • A single-protein structure has one chain, “A” • 1HPV is a dimer and has chains “A” and “B”. BCHB524 - 2013 - Edwards

  12. SMCRA Data-Model import Bio.PDB.PDBParserimport sys# Use QUIET=True to avoid lots of warnings...parser = Bio.PDB.PDBParser(QUIET=True)structure = parser.get_structure("1HPV", "1HPV.pdb")model = structure[0]# This structure is a dimer with two chainsachain = model['A']bchain = model['B'] BCHB524 - 2013 - Edwards

  13. SMCRA • Chains are composed of amino-acid residues • Access by iteration, or by index • Residue “index” may not be sequence position • Residues are composed of atoms: • Access by iteration or by atom name • …except for H! • Water molecules are also represented as atoms – HOH residue name, het=“W” BCHB524 - 2013 - Edwards

  14. SMCRA Data-Model import Bio.PDB.PDBParserimport sys# Use QUIET=True to avoid lots of warnings...parser = Bio.PDB.PDBParser(QUIET=True)structure = parser.get_structure("1HPV", "1HPV.pdb")model = structure[0]for chain in model:for residue in chain:for atom in residue:print chain, residue, atom, atom.get_coord() BCHB524 - 2013 - Edwards

  15. Polypeptide molecules S-G-Y-A-L BCHB524 - 2013 - Edwards

  16. SMCRA Atom names BCHB524 - 2013 - Edwards

  17. Check polypeptide backbone import Bio.PDB.PDBParserimport sys# Use QUIET=True to avoid lots of warnings...parser = Bio.PDB.PDBParser(QUIET=True)structure = parser.get_structure("1HPV", "1HPV.pdb")model = structure[0]achain = model['A']for residue in achain:    index = residue.get_id()[1]    calpha = residue['CA']    carbon = residue['C']    nitrogen = residue['N']    oxygen = residue['O']print"Residue:",residue.get_resname(),indexprint"N  - Ca",(nitrogen - calpha)print"Ca - C ",(calpha - carbon)print"C  - O ",(carbon - oxygen)print BCHB524 - 2013 - Edwards

  18. Check polypeptide backbone # As before...for residue in achain:    index = residue.get_id()[1]    calpha = residue['CA']    carbon = residue['C']    nitrogen = residue['N']    oxygen = residue['O']print"Residue:",residue.get_resname(),indexprint"N  - Ca",(nitrogen - calpha)print"Ca - C ",(calpha - carbon)print"C  - O ",(carbon - oxygen)if achain.has_id(index+1):        nextresidue = achain[index+1]        nextnitrogen = nextresidue['N']print"C  - N ",(carbon - nextnitrogen)print BCHB524 - 2013 - Edwards

  19. Find potential disulfide bonds • The sulfur atoms of Cys amino-acids often form “di-sulfide” bonds if they are close enough – less than 8 Å. • Compare with PDB file contents: SSBOND • Bio.PDB does not provide an easy way to access the SSBOND annotations BCHB524 - 2013 - Edwards

  20. Find potential disulfide bonds import Bio.PDB.PDBParserimport sys# Use QUIET=True to avoid lots of warnings...parser = Bio.PDB.PDBParser(QUIET=True)structure = parser.get_structure("1KCW", "1KCW.pdb")model = structure[0]achain = model['A']cysresidues = []for residue in achain:if residue.get_resname() == 'CYS':        cysresidues.append(residue)for c1 in cysresidues:    c1index = c1.get_id()[1]for c2 in cysresidues:        c2index = c2.get_id()[1]if (c1['SG'] - c2['SG']) < 8.0:print"possible di-sulfide bond:",print"Cys",c1index,"-",print"Cys",c2index,printround(c1['SG'] - c2['SG'],2) BCHB524 - 2013 - Edwards

  21. Find contact residues in a dimer import Bio.PDB.PDBParserimport sys# Use QUIET=True to avoid lots of warnings...parser = Bio.PDB.PDBParser(QUIET=True)structure = parser.get_structure("1HPV","1HPV.pdb")achain = structure[0]['A']bchain = structure[0]['B']for res1 in achain:    r1ca = res1['CA']    r1ind = res1.get_id()[1]    r1sym = res1.get_resname()for res2 in bchain:        r2ca = res2['CA']        r2ind = res2.get_id()[1]        r2sym = res2.get_resname()if (r1ca - r2ca) < 6.0:print"Residues",r1sym,r1ind,"in chain A",print"and",r2sym,r2ind,"in chain B",print"are close to each other:",round(r1ca-r2ca,2) BCHB524 - 2013 - Edwards

  22. Find contact residues in a dimer – better version import Bio.PDB.PDBParserimport sys# Use QUIET=True to avoid lots of warnings...parser = Bio.PDB.PDBParser(QUIET=True)structure = parser.get_structure("1HPV","1HPV.pdb")achain = structure[0]['A']bchain = structure[0]['B']bchainca = [ r['CA'] for r in bchain ]neighbors = Bio.PDB.NeighborSearch(bchainca)for res1 in achain:    r1ca = res1['CA']    r1ind = res1.get_id()[1]    r1sym = res1.get_resname()for r2ca in neighbors.search(r1ca.get_coord(), 6.0):        res2 = r2ca.get_parent()        r2ind = res2.get_id()[1]        r2sym = res2.get_resname()print"Residues",r1sym,r1ind,"in chain A",print"and",r2sym,r2ind,"in chain B",print"are close to each other:",round(r1ca-r2ca,2) BCHB524 - 2013 - Edwards

  23. Superimpose two structures import Bio.PDBimport Bio.PDB.PDBParserimport sys# Use QUIET=True to avoid lots of warnings...parser = Bio.PDB.PDBParser(QUIET=True)structure1 = parser.get_structure("2WFJ","2WFJ.pdb")structure2 = parser.get_structure("2GW2","2GW2a.pdb")ppb=Bio.PDB.PPBuilder()# Manually figure out how the query and subject peptides correspond...# query has an extra residue at the front# subject has two extra residues at the backquery = ppb.build_peptides(structure1)[0][1:]target = ppb.build_peptides(structure2)[0][:-2]query_atoms = [ r['CA'] for r in query ]target_atoms = [ r['CA'] for r in target ]superimposer = Bio.PDB.Superimposer()superimposer.set_atoms(query_atoms, target_atoms)print"Query and subject superimposed, RMS:", superimposer.rmssuperimposer.apply(structure2.get_atoms())# Write modified structures to one file outfile=open("2GW2-modified.pdb", "w") io=Bio.PDB.PDBIO() io.set_structure(structure2) io.save(outfile) outfile.close()  BCHB524 - 2013 - Edwards

  24. Superimpose two chains import Bio.PDBparser = Bio.PDB.PDBParser(QUIET=1)structure = parser.get_structure("1HPV","1HPV.pdb")model = structure[0]ppb=Bio.PDB.PPBuilder()# Get the polypeptide chainsachain,bchain = ppb.build_peptides(model)aatoms = [ r['CA'] for r in achain ]batoms = [ r['CA'] for r in bchain ]superimposer = Bio.PDB.Superimposer()superimposer.set_atoms(aatoms, batoms)print"Query and subject superimposed, RMS:", superimposer.rmssuperimposer.apply(model['B'].get_atoms())# Write structure to fileoutfile=open("1HPV-modified.pdb", "w") io=Bio.PDB.PDBIO() io.set_structure(structure) io.save(outfile)  outfile.close()  BCHB524 - 2013 - Edwards

  25. Exercises • Read through and try the examples from Chapter 10 of the Biopython Tutorial and the Bio.PDB FAQ. • Write a program that analyzes a PDB file (filename provided on the command-line!) to find pairs of lysine residues that might be linked if the BS3 cross-linker is used. • The rigid BS3 cross-linker is approximately 11 Å long. • Write two versions, one that computes the distance between all pairs of lysine residues, and one that uses the NeighborSearch technique. BCHB524 - 2013 - Edwards

  26. Homework 7 • Due Wednesday, October 16. • Reading from Lecture 11, 12 • Exercise from Lecture 11 • Exercise from Lecture 12 • Rosalind exercise 13 BCHB524 - 2013 - Edwards

More Related