1 / 31

Common features of microRNA target prediction tools

Common features of microRNA target prediction tools. Speaker : 生 科 碩一 宋鴻青. Noncoding RNA ~22 nt long Gene Key. MicroRNA. MicroRNA. mir. miR. (ex: has-mir-26a-3p ??). Naming:. MicroRNA. let (lethal). Seed Sequence. Target Prediction. miRnada miRnada-mirSVR TargetScan

Download Presentation

Common features of microRNA target prediction tools

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Common features of microRNA target prediction tools Speaker : 生科碩一 宋鴻青

  2. Noncoding RNA ~22 nt long Gene Key MicroRNA

  3. MicroRNA mir miR

  4. (ex: has-mir-26a-3p ??) Naming: MicroRNA let (lethal) Seed Sequence

  5. Target Prediction

  6. miRnada miRnada-mirSVR TargetScan DIANA-microT-CDS Target Prediction MirTarget2 rna22-GUI PITA RNAhybrid

  7. Variable: Seed Mach Conservation Free energy Site accessibility Target Prediction MirTarget2 rna22-GUI PITA RNAhybrid miRnada miRnada-mirSVR TargetScan DIANA-microT-CDS

  8. Variable: Seed Mach Conservation Free energy Site accessibility

  9. Variable: Seed Mach Conservation Free energy Site accessibility 3’ compensatory site

  10. Variable: Seed Mach Conservation Free energy Site accessibility Free energy ∆G High free energy low free energy

  11. Variable: Seed Mach Conservation Free energy Site accessibility

  12. Variable: Seed Mach Conservation Free energy Site accessibility

  13. Variable: Seed Mach Conservation Free energy Site accessibility Target Prediction

  14. Target Prediction MirTarget2 rna22-GUI PITA RNAhybrid miRnada miRnada-mirSVR TargetScan DIANA-microT-CDS

  15. mRNA sequence Alignment score >threshold Input Seed match (3’ UTR) miRnada miR sequence Users: expert Free energy calculated Organisms: any ∆G<threshold Conservation targets

  16. mRNA sequence Gene name Alignment score >threshold Input Seed match (3’ UTR) miRnada-mirSVR miR sequence miRID Exp(Hela) Data base Users: all Free energy calculated ∆G<threshold Support Vector Regression Conservation targets SVR score

  17. miRnada-mirSVR Organisms:

  18. gene name Alignment score >threshold Input Seed match (3’ UTR) TargetScan miR name Conservation Exp Data base Scoring Users: all Conserved Or Poorly conserved Context score targets

  19. TargetScan Organisms:

  20. gene name DIANA-microT-CDS Input miR name Free energy Site accessibility KEGG Site abundance Seed match (3’ UTR) Target (3’ UTR) Target (CDS) Conservation Users: all Machine learning Score 1 Score 2 Exp (microAry) Data base analysis targets

  21. DIANA-microT-CDS Organisms:

  22. MirTarget2 gene name Input targets Predict by model miR name Machine learning Free energy miRDB Data base Conservation Users: all Seed match (3’ UTR) Site accessibility Site abundance

  23. MirTarget2 Organisms:

  24. gene name Alignment score >threshold Input Seed match rna22-GUI miR name Free energy calculated Users: advanced ∆G<threshold Targets cDNA map

  25. PITA

  26. PITA Organisms: Users: all

  27. RNAhybrid

  28. RNAhybrid Users: advanced Organisms:any

  29. Summary

  30. Summary

  31. 暑假愉快 ^^

More Related