220 likes | 322 Views
NSF-Relevant Challenges in Computational Intelligence. Jaime Carbonell (jgc@cs.cmu.edu) & Tom Mitchell, Guy Bleloch, Randy Bryant, et al School of Computer Science Carnegie Mellon University 26-April-2007. I) Major Computational Intelligence Research Areas
E N D
NSF-Relevant Challenges in Computational Intelligence Jaime Carbonell(jgc@cs.cmu.edu) & Tom Mitchell, Guy Bleloch, Randy Bryant, et al School of Computer Science Carnegie Mellon University 26-April-2007 I) Major Computational Intelligence Research Areas II) Next-Generation Infrastructure (DISC)
Computational Intelligence • Machine Learning • Inductive learning algorithms, active leraning • Data mining & novel pattern detection • Language Technologies • Multilingual & next-veneration search engines • Machine translation (e.g. Arabic English) • Perception • Computer vision, tactile sensing (e.g., in robotics) • Planning & optimizing • Reasoning & planning under uncertainty • Non-linear optimization (beyond O. R.) w/uncertainty • Key scientific applications • Proteomics, genomics, computational biology • Modeling human brain functions
Data Mining Object recognition Machine Learning Speech Recognition • Reinforcement learning • Predictive modeling • Pattern discovery • Hidden Markov models • Convex optimization • Explanation-based learning • .... Automated Control learning Extracting facts from text
Leveraging Existing Data Collecting Systems 1999 Influenza outbreak Influenza cultures Sentinel physicians WebMD queries about ‘cough’ etc. School absenteeism Sales of cough and cold meds Sales of cough syrup ER respiratory complaints ER ‘viral’ complaints Influenza-related deaths Week (1999-2000)) [Moore, 2002]
Cluster Evolution and Density Change Detection: d2F(r(t))/dt2
MLR threshold function: locally linear, globally non-linear Classifier = Rocchio, Topic = Civil War (R76 in TREC10), Threshold = MLR
Info-Age Bill of Rights • Get the right information • To the right people • At the right time • On the right medium • In the right language • With the right level of detail Search Engines Personalization Anticipatory Analysis Speech Recognition Machine Translation Summarization
MMR vs CurrentSearch Engines documents query MMR IR λcontrols spiral curl
Types of Machine Translation Interlingua Semantic Analysis Sentence Planning Syntactic Parsing Transfer Rules Text Generation Source (Arabic) Target (English) Direct: SMT, EBMT Requires Massive Massive Data Resources
2005 NIST Arabic-English MT Expert Human translator • Interlingual MT • Grammars, semantics • Best for focused domains • Corpus-Based MT • Pre-translated text (10-200M words) • Target language text (100M – 1 Trillon words) • Best for general MT • Context-Based MT • Improved variant of corpus-based MT • Perfect client for DISC BLEU Score 0.7 Usable translation 0.6 Human Edittable translation Google 0.5 ISI Topic Identification IBM + CMU UMD 0.4 JHU-CU Edinburgh 0.3 Useless Region 0.2 Systran 0.1 Mitre FSC 0.0
Arabic Statistical-MT Output بكين 17 يناير / شينخوا / حث مسئولون صينيون وروس جميع الاطراف المعنية علي " التزام الهدوءوممارسة ضبط النفس " بشان القضية النووية الخاصة بجمهورية كوريا الديمقراطية الشعبية . وقد التقي نائب وزير الخارجية الصيني يانغ ون تشانغ ونائب وزير الخارجية الروسي الكسندر لوسيوكوف علي مادبة غداء حيث دعيا الاطراف المعنية الي مواصلة السعي من اجل الحل السلمي من خلال الحوار في ظل الوضع المعقد الحالي . Beijing January 17 / Shinhua / the Chinese and Russian officials urged all parties concerned to " remain calm and exercise restraint " over the nuclear issue of the Democratic People's Republic of Korea. He met with vice Chinese foreign minister Yang Chang won the deputy of the Russian foreign minister Alexander Losyukov at a lunch with invited interested parties to continue the search for a peaceful solution through dialogue under the current complicated situation. BLEU = .64
What About Minor Languages or Dialects without Massive Data?
(Borrowed from: Judith Klein-Seetharaman) PROTEINS Sequence Structure Function Primary Sequence MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA Folding 3D Structure Complex function within network of proteins Normal
Disease PROTEINS Sequence Structure Function Primary Sequence MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA Folding 3D Structure Complex function within network of proteins
Predicting Protein Structures • Protein Structure is a key determinant of protein function • Crystalography to resolve protein structures experimentally in-vitro is very expensive, NMR can only resolve very-small proteins • The gap between the known protein sequences and structures: • 3,023,461 sequences v.s. 36,247 resolved structures (1.2%) • Therefore we need to predict structures in-silico
Joint Labels Linked Segmentation CRF • Node: secondary structure elements and/or simple fold • Edges: Local interactions and long-range inter-chain and intra-chain interactions • L-SCRF: conditional probability of y given x is defined as
Fold Alignment Prediction:β-Helix • Predicted alignment for known β-helices on cross-family validation
fMRI to observe human brain activity Machine learning to discover patterns in complex data Data New discoveries about human brain function Our algorithms have learned to distinguish whether a human subject is reading a word e.g. ‘tools’ or ‘buildings’ with 90% accuracy
Requisite Infrastructure • Data Intensive SuperComputing (DISC) for tera-scale and peta-scale data repositories • Advanced algorithmsresearch • Massively-parallel decomposition • Scalability in analytics & learning • Extracting compact models for run-time • Planning, reasoning, learning w/uncertainty) • Active Learning (maximally reducing uncertainty) • Domain expertise (e.g. proteomics, neural sciences, astronomy, network security, …)
System collects and maintains data Shared, active data set Computation colocated with storage Faster access Data stored in separate repository No support for collection or management Brought into system for computation Time consuming Limits interactivity System Comparison: Data DISC Conventional Supercomputers System System
Application programs written in terms of high-level operations on data Runtime system controls scheduling, load balancing, … Programs described at very low level Specify detailed control of processing & communications Rely on small # of software packages Written by specialists Limits classes of problems & solution methods Program Model Comparison DISC Conventional Supercomputers Application Programs Application Programs Machine-Independent Programming Model Software Packages Runtime System Machine-Dependent Programming Model Hardware Hardware
Final Thoughts • Opportunities in Computational Intelligence • Machine learning for tough problems: relevant novelty detection, structural learning, active learning • Scientific applications: Computational X (X=biology, linguistics, astrophysics, chemistry, …) • Next generation computational infrastructure • DISC principle (beyond HPC, beyond grid, …) • Algorithmic fundamentals • International programs (on common problems)