170 likes | 333 Views
Testing some D efinition s of Path Dependence in Economic s. Aleksander Jakimowicz. P ath dependence. Proces dynamiczny nazywamy path dependent , jeśli wynik jakiegokolwiek okresu zależy od wektora historii i może zależeć od jego uporządkowania:.
E N D
Testingsome Definitions ofPath Dependence in Economics Aleksander Jakimowicz
Path dependence Proces dynamiczny nazywamy path dependent, jeśli wynik jakiegokolwiek okresu zależy od wektora historii i może zależeć od jego uporządkowania: gdzie ht jest wektorem zdarzeń historycznych, Gt reprezentuje funkcję wyniku, natomiast xt+1 to wynik okresu t + 1. Wynik każdego okresu może także zawierać dodatkową informację o możliwościach i wydarzeniach, które pojawiły się w tym okresie. W ten sposób powstaje opis środowiska w okresie t, uwzględniający czynniki egzogeniczne mające wpływ na wyniki. Historia w czasie T, oznaczana przez hT, jest kombinacją wszystkich wyników xt aż do czasu T – 1 oraz wszystkich innych czynników aż do czasu T. Proces dynamiczny ma także funkcję wyniku Gt, która odzwierciedla wpływ bieżącej historii na następny wynik. Funkcja wyniku może się zmieniać w czasie, dlatego jest indeksowana przez t. Nie musi być ona deterministyczna, może generować pewien rozkład prawdopodobieństwa wyników. Należy zauważyć, że w przypadku powyższej definicji zmiana porządku x1 i x2 może zmienić wynik generowany przez Gt.
Strong path dependence W niektórych przypadkach może być użyteczne pojęcie strong path dependence. Proces dynamiczny jest strong path dependence, jeśli dla dwóch odmiennych wektorów historii funkcje wynikowe są różne. Można to przedstawić w formie następującej: dla Dwie odmienne ścieżki implikują różne prawdopodobieństwa wyników. Z właściwości strong path dependence wynika zależność path dependence. Strong path dependence możebyćnazwaneuporządkowaną zależnością path dependence. Zależności path dependence nie należy mylić z wrażliwością na warunki początkowe (sensitivity to initial conditions), która jest istotą chaosu deterministycznego.
Ekonomia neoklasyczna: model cyklu koniunkturalnegoSamuelsona-Hicksa c – krańcowa skłonność do konsumpcji, Y – dochód narodowy, C – konsumpcja, s – krańcowa skłonność do oszczędzania, A0 – początkowy poziom wydatków autonomicznych, Iind– inwestycje indukowane, Iaut– inwestycje autonomiczne, k – okres oscylacji, k0 – faza oscylacji. v – współczynnik przyśpieszenia,
Path dependence a ekonomia neoklasyczna Typowe trajektorie dochodu narodowego w modelu cyklu koniunkturalnego Samuelsona-Hicksa: I – zbieżność do ścieżki równowagi ruchomej (trendu) niezależnie od wektora historii; II – zbieżność do punktu przyciągania w nieskończoności niezależnie od wektora historii.
Ekonomia neoklasyczna:model wzrostu gospodarczego Solowa Oznaczenia: K – kapitał, L – praca, n – stopa przyrostu naturalnego Liniowa i homogeniczna funkcja produkcji ze stałymi przychodami względem skali: gdzie dla > 0, oraz Zatem gdzie
Funkcja produkcji Cobba-Douglasa i wpływ środowiska naturalnego Cobb-Douglas Redukcja wydajności gdzie m, to dodatnie parametry. Jeśli → 0, to Współczynnik B może być interpretowany jako poziom technologii, natomiast > 0. Poziom nasycenia Wzrost gospodarczy i towarzysząca mu koncentracja kapitału powodują powstanie kosztów społecznych związanych z degradacją środowiska naturalnego. Wyrażenie po prawej stronie przedstawia wpływ emisji zanieczyszczeń na produkcję per capita. Rozsądne dysponowanie zasobami pomoże uniknąć wzrostu zanieczyszczeń, ale wtedy zmniejszy się przyrost produkcji. Osiągnięcie poziomu nasycenia spowoduje spadek produkcji do zera. Z punktu widzenia programów ochrony środowiska współczynniki m i mogą być traktowane jako parametry kontrolne. Układ dynamiczny:
Pathdependence a długość wektorów historii Atraktor zerowy współistnieje z dwoma niestabilnymi punktami stałymi k2c i k3c (k0 = 0,4; = 3,9; = 2,19; m = 1,45; = 8,66)
Pathdependence a długość wektorów historii Wykres odwzorowania nie przecina się w ogóle z przekątną F(k) = k, zatem jedynym przyciągającym punktem stałym jest zero i do niego właśnie zmierza trajektoria startująca w punkcie k0 = 0,4. Długość wektorów historii zależy nie tylko od warunków początkowych, lecz także od wpływów otoczenia (parametrów strukturalnych). (k0 = 0,4; = 3,9; = 2,87; m = 1,45; = 2,9)
Strong path dependence Koegzystencja dwóch atraktorów zmodyfikowanego modelu Solowa, które są punktami stałymi. Trajektoria zainicjowana w punkcie k01 = 0,1535 jest zbieżna do k3c, a trajektoria rozpoczęta w punkcie k01 = 0,1 dąży do zera. Punkt k2c 0,1285 jest repelerem. Przyciągający punkt stały w postaci zera może współistnieć ze stabilną orbitą periodyczną o dowolnym okresie albo z atraktorem chaotycznym. ( = 3,9, = 2,9, m = 1,45 i = 9,1)
Pathdependence w gospodarcez automatycznymi stabilizatorami koniunktury NonlinearSD oscillator(smooth and discontinuous)
Automatyczne stabilizatory koniunktury • Polityka fiskalna oparta na progresywnym opodatkowaniu strumienia dochodów. • Zasiłki dla bezrobotnych i inne świadczenia społeczne. • Programy pomocy dla rolnictwa polegające na skupie i sprzedaży produktów rolnych. • Oszczędności gospodarstw domowych i przedsiębiorstw.
Zbiory przyciągania Wady • Zbiór przyciągania atraktora jest zbiorem wszystkich warunków początkowych w przestrzeni fazowej, których trajektorie dążą do atraktora. • Granice, które dzielą różne brzegi przyciągania, nazywają się granicami zbiorów przyciągania. • Do oceny znaczenia danego atraktora w systemie dynamicznym niezbędna jest wiedza o jego zbiorze przyciągania i geometrii tego zbioru. • Granice zbiorów przyciągania mogą być gładkie lub fraktalne. • Granica zbioru przyciągania jest fraktalna, jeśli zawiera transwersalny punkt homokliniczny (lub granica ta jest zbiorem Cantora). • Najciekawsze zjawiska dynamiczne powstają, gdy w systemie dynamicznym współistnieją co najmniej trzy atraktory. • Trzy lub więcej zbiorów mają własność Wady, jeśli każdy punkt leżący na brzegu domknięcia jednego zbioru przyciągania leży na brzegach wszystkich zbiorów. • Jeśli zbiory przyciągania mają własność Wady, to ich brzegi są fraktalne. • Dany punkt jest punktem brzegowym zbioru przyciągania, jeśli każde otwarte sąsiedztwo tego punktu ma niepustą część wspólną z co najmniej jednym innym zbiorem przyciągania. • Punkt brzegowy zbioru przyciągania jest punktem Wady, jeśli każde otwarte otoczenie tego punktu ma niepustą część wspólną z co najmniej trzema innymi zbiorami przyciągania. • Zbiór przyciągania jest zbiorem przyciągania Wady, jeśli każdy jego punkt brzegowy jest punktem Wady. • Jeśli w systemach dynamicznych, w których na tej samej granicy zbiorów przyciągania występują punkty Wady i punkty nie mające własności Wady, to mówimy, że te zbiory przyciągania mają częściową własność Wady.
Efekty dynamiczne fraktalnych brzegów zbiorów przyciągania • Fraktalne brzegi zbiorów przyciągania są poważną przeszkodą w przewidywaniu zachowania układów dynamicznych, analogicznie jak efekt motyla związany z atraktorami chaotycznymi. • W tych warunkach nawet bardzo mała niepewność związana z wyznaczeniem warunków początkowych może spowodować znaczne trudności w określeniu tego, do którego atraktora będzie zmierzał system. • Obecność brzegów fraktalnych powoduje, że bardzo trudno zmniejszyć niepewność związaną ze stanem docelowym trajektorii poprzez zwiększenie precyzji wyznaczania warunku początkowego. Zjawisko to nazywamy wrażliwością stanu końcowego (że mała niepewność w określeniu warunku początkowego może spowodować dużą utratę zdolności określenia, do którego atraktora będzie zmierzał system). • Istnieje korelacja między wysoką wrażliwością systemu dynamicznego na szum a wymiarem fraktalnym brzegu oddzielającego zbiory przyciągania. • Wrażliwość stanu końcowego spełnia warunki definicji strong path dependence.
Pathdependence a zbiory przyciągania Wady: ekstremalna niepewność wyniku(zbiory przyciągania siedmiu atraktorów periodycznych) Atraktory periodyczne o dużym okresie mają stosunkowo małe zbiory przyciągania
Wnioski • W ekonomii neoklasycznej, opartej na modelach liniowych, występuje zależność path dependence w wersji słabej. Związane jest to z istnieniem tylko dwojakiego typu atraktorów: albo dynamicznego stanu równowagi, albo punktu w nieskończoności, do których zbieżne są trajektorie niezależnie od warunków początkowych. • W ekonomii konwencjonalnej długość wektorów historii zależy głównie od warunków początkowych. • Już w prostych jednowymiarowych systemach nieliniowych istnieje zależność strong path dependence, co pokazuje zmodyfikowany model wzrostu gospodarczego Solowa. Potwierdzone zostało także istnienie tej zależności w wersji słabej, przy czym długość wektorów historii zależy zarówno od warunków początkowych, jak i wartości parametrów. • Wrażliwość stanu końcowego, występująca w warunkach fraktalnych brzegów zbiorów przyciągania, pociąga za sobą zależność strong path dependence. • Jedną z interesujących konsekwencji własności Wady jest współistnienie wielu stanów finalnych i trudność przewidzenia faktycznego stanu finalnego. • Nieprzewidywalność systemu z własnością Wady jest większa niż systemów z fraktalnymi brzegami zbiorów przyciągania. • Własność Wady związana jest z nowym rodzajem zależności, który można nazwać extreme strong path dependence. Stosunkowo mały szum może wywoływać nieprzewidywalne przeskoki miedzy różnymi atraktorami periodycznymi.