400 likes | 416 Views
FUZZY LOGIC CONNECTIVES IN ABDUCTIVE INFERENCE AND CLUSTERING. Joseph AGUILAR-MARTIN, University of TOULOUSE (France). agenda. What we want to achieve : (Biological process example) Logic probability fuzzy membership Aggregation adequacy
E N D
FUZZY LOGIC CONNECTIVES IN ABDUCTIVE INFERENCE AND CLUSTERING. Joseph AGUILAR-MARTIN, University of TOULOUSE (France)
agenda • What we want to achieve : (Biological process example) • Logic probability fuzzy membership • Aggregation adequacy • Abductive learning algorithm (LAMDA) • Industrial supervision tool
1 • What we want to achieve : (Biological process example)
fermentationprocess supervision Yeast Production (LBB Touluse) Deduce el physiologicalstate from: DOT : oxygen partial pressure O2 : oxygen % in output CO2 : carbon dióxyde % in output pH. OH- ion (consumed) : pH regulator
fermentationprocess supervision Building Supervision automata
2 Logic probability fuzzy membership
LOGIC basic reasoning mechanisms on time Parmenides, Zeno Leibniz Aquinas Lullius Aristoteles 1200 1300 1600 -400 -500
3 Aggregation adequacy
Adequacies Concept in an universe Adequacy of z to C Adequacy of z with respect to each di
4 Abductive learning algorithm (LAMDA
x1 Arithmétique (somme pondérée) x2 S/w xi f y xn-1 y = f ( Swi.xi ) xn Fonction « axone » (logistique..) Fonction « synapse » (présence..) Logique (conjonction) m1 x1 m2 x2 & mi xi y mn-1 xn-1 y = (m1 & m2 … & mi …& mn-1 & mn ) mn xn connexionism
training data validation data application illustrative example
5 Industrial supervision tool
industrial example LAMDA 3. Prétraitement de Données. 1. Lissage 7 Individus Class de Transition Gauss1 Min MAx 0.8 App Supervisée Gauss1 Min Max 1 App Non Supervisée ** Variables:Capteur du signal du commande PI,Capteur Niveau T1(my1),Capteur Niveau T2 (my2),Fluxe de sortie valve P1 (mQp).
SALSA supervisor current data operation information finite state machine built by abductive learning