1 / 16

Analisa Data Statistik Chap 11: ANOVA

Analisa Data Statistik Chap 11: ANOVA. Agoes Soehianie, Ph.D. LATAR BELAKANG ANOVA.

roch
Download Presentation

Analisa Data Statistik Chap 11: ANOVA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Analisa Data StatistikChap 11: ANOVA Agoes Soehianie, Ph.D

  2. LATAR BELAKANG ANOVA ANOVA adalah singkatan dari Analysis of Variance. Latar belakang dikembangkan metoda ini karena ingin dilakukan testing terhadap rata-rata populasi yg mengalami “perlakuan” yg berbeda-beda. Pertanyaannya : apakah perbedaan rata-rata antara berbagai grup yg mengalami perlakuan berbeda tsb signifikan atau tidak. Asumsi untuk ujia ANOVA adalah: • Populasi semuanya normal • Standard deviasi populasi sama • Populasi independen MIsal ada 4 grup A,B,C dan D dengan rata-rata sampel xA, xB, xC dan xD. Ingin diketahui apakah rata-rata populasi yg terkait dengan sampel tsb sama? Tentu saja kita bisa melakukan uji statistik bagi tiap sepasang mean, misal μA=μB lalu μA=μC dst. Semuanya ada 6 pasangan yg mungkin, jadi ada 6 uji yg harus dilakukan. Untuk masing-masing dilakukan test-t

  3. LATAR BELAKANG ANOVA Apa kelemahan test-t sepasang-sepasang ini? • Banyak test harus dilakukan • Kesalahan tipe-1 yg besar Misal tiap-tidap test-t diuji dengan tingkat signifikan 0.05, berarti probabilitas H0 diterima dan keputusan benar 0.95. Karena ada 6 pasangan test (dalam contoh sebelumnya) maka probabilitas telah dibuat keputusan benar karena menerima H0 yg benar adalah 0.95*0.95*0.95*0.95*0.95*0.95 = 0.735 Jadi probabilitas melakukan error tipe I, yaitu H0 benar tapi ditolak adalah 1-0.735 = 0.265! Oleh karena diperlukan uji yg dapat sekaligus membandingkan kesamaan rata-rata berbagai grup tsb serempak.

  4. TEST ANOVA – Ide μA μB μC Ide dasar test ANOVA adalah perbedaan rata-rata populasi ditentukan oleh dua faktor yaitu variasi data dalam 1 sampel dan variasi data antar sampel. Perbedaan rata-rata antar populasi nyata jika variasi data antar sampel besar sedangkan variasi data dalam 1 sampel kecil.

  5. TEST ANOVA – Macam Variasi Beberapa definisi variasi. • Variasi Total Jumlah total kuadrat selisih data dengan rata-rata total seluruh data (grand mean) • Variasi Antar Sampel (atau Variasi karena Perlakuan) Jumlah total kuadrat selisih rata-rata tiap sampel thd rata-rata total (grand mean)

  6. TEST ANOVA – Macam Variasi Beberapa definisi variasi. 3. Variasi Random Jumlah total kuadrat selisih data dengan rata-rata sampel yg terkait Dengan G adalah banyak group, ng adalah banyak sampel di group-g. Dapat dibuktikan bahwa ketiga variasi tsb saling terkait: SStotal = SST + SSE

  7. TEST ANOVA 1. Hipotesa H0: μ1= μ2= μ3 = …. H1: tidak semua rata-rata populasi sama 2. Tentukan tingkat signifikan α 3. Daerah kritis Test statistiknya adalah F-test dengan dimana MST : Mean Squares of Treatments (between groups) MSE : Mean Squares of Errors (within errors) Dengan k : jumlah grup dan n adalah banyak total semua data. Derajat kebebasan F adalah (v1=k-1) untuk pembilang dan (v2=n-k) untuk penyebut. Tentukan nilai kritis Fα(v1,v2) = Fkritis. Tolak H0 jika Fhitung > Fkritis

  8. TEST ANOVA 4. Perhitungan 5. Keputusan Bandingkan Fhitung dengan Fkritis 6. Kesimpulan

  9. TEST ANOVA – Contoh Prof. Xsentrik memiliki 22 murid di kuliah Statistik. Murid-murid tsb diminta memberikan rating thd perkuliahannya dalam 4 kategori: Baik sekali, Baik, Cukup dan Jelek. Setelah itu diakhir kuliah diperoleh data nilai akhir Statistik para murid tsb.

  10. SOlusi - Excell Anova: Single Factor SUMMARY Groups Count Sum Average Variance Baik sekali 4 349 87.25 36.91667 Baik 5 391 78.2 58.7 Cukup 7 510 72.85714 30.14286 Jelek 6 414 69 13.6 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 890.6838 3 296.8946 8.990643 0.000743 3.159908 Within Groups 594.4071 18 33.02262 Total 1485.091 21

  11. SOlusi – Manual (menghitung rata-rata dalam grup dan grand) GRUP Baik sekali Baik Cukup Jelek 1 2 3 4 ------------------------------------------------------------------------------ 94 75 70 68 90 68 73 70 85 77 76 72 80 83 78 65 88 80 74 68 65 65 ---------------------------------------------------------------------------------------------------- Σ 349 391 510 414 Rata-rata 87.25 78.2 72.86 69 Rata-rata dalam grup Rata-rata grand

  12. SOlusi – Menghitung SSE (variasi antar grup) Jumlah data di Grup1 : 4 Grup 2 : 5 Grup 3 : 7 Grup 4 : 6 SST = 890.68

  13. SOlusi – Menghitung Variasi Dalam Grup 45.56 10.24 8.16 1.00 7.56 104.04 0.02 1.00 5.06 1.44 9.88 9.00 52.56 23.04 26.45 16.00 96.04 51.02 25.00 23.59 16.00 61.73 ---------------------------------------------------------------------------------- 110.75 234.8 180.86 68 SSE = 110.75+234.8+180.86+68 = 594.41

  14. SOlusi – Menghitung Variasi Total 337.22 0.40 31.77 58.31 206.31 58.31 6.95 31.77 87.68 1.86 0.13 13.22 19.04 54.22 5.59 113.13 152.86 19.04 2.68 58.31 113.13 113.13 ---------------------------------------------------------------------------------------------- 650.26 267.66 234.93 332.25 SStotal = 1485.09

  15. SOlusi – Ringkasan Hitungan Variasi antar grup : SST = 890.68 v1 = 4-1=3 MST= SST/v1=296.89 Variasi dalam grup : SSE = 594.41 v2 = 22-4=18 MSE=SSE/v2=33.02 Variasi total : SSTotal = 1485.09 Fhitung = MST/MSE = 296.89/33.02 = 8.99 Dengan derajat kebebasan v1=3 dan v2=18

  16. SOlusi – Testing Hipotesis 1. Hipotesa H0: μ1= μ2= μ3 = μ4 H1: tidak semua rata-rata populasi sama 2. tingkat signifikan α = 5% 3. Daerah kritis Test statistiknya adalah F-test. F(v1,v2) = MST/MSE dengan dengan v1=k-1 = 4-1 = 3 dan v2= n-k = 22-4 = 18 Nilai kritis F0.025 (3,18) = 3.16 Tolak H0 jika F> 3.16 4. Perhitungan Fhitung = MST/MSE = 296.89/33.02 = 8.99 5. Keputusan : Karena F > 3.16 maka H0 ditolak 5. Kesimpulan : Tidak semua rata-rata grup sama

More Related