160 likes | 278 Views
One scenario for the CBM Trigger Architecture. Ivan Kisel Kirchhoff-Institut für Physik , Uni-Heidelberg. KIP. FutureDAQ Workshop, München March 25-26, 2004. Particle Multiplicities and Data Rates. n char n neut. 980 1080. 680 700. 1000 700. for Au+Au 25 A GeV UrQMD.
E N D
One scenario forthe CBM Trigger Architecture Ivan Kisel Kirchhoff-Institut für Physik, Uni-Heidelberg KIP FutureDAQ Workshop, München March 25-26, 2004
Particle Multiplicities and Data Rates nchar nneut 980 1080 680 700 1000 700 for Au+Au 25 A GeV UrQMD Multiplicities for central collision not including: background link overhead Data rate for 107 int / sec Sub-System GByte/sec STS 60 Total 350 RICH 90 TRD 130 RPC 10 ECAL 50 W.Müller Ivan Kisel, KIP, Uni-Heidelberg
DAQ-Trigger Scenario From LoI Hit Level Processing Bandwidth 1 TByte/sec Local Level Processing Buffering; Event association; Regional Level Pre-Processing 3-10 MHz Event Rate First Level Trigger: FGPA; DSP; PC 300 kHz Event Rate Second Level Trigger: PC Farm 20 kHz Event Rate 1 GByte/sec Bandwidth W.Müller Ivan Kisel, KIP, Uni-Heidelberg
Modular Structure of DAQ RU RU RU RU RU RU RU RU RU RU RU RU RU RU RU RU Detector MAPS, STS RICH TRD ECAL 50 kB/ev 107 ev/s MAPS STS RICH TRD ECAL SFn Dt SFn Dt SFn Dt SFn Dt SFn Dt 100 ev/slice Time-Slice Builder Network N x M Scheduler SFn Dt MAPS STS RICH TRD ECAL SFn available Trigger/Offline PC Farm 5 MB/slice Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Farm Control System 105sl/s Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Sub-Farm Ivan Kisel, KIP, Uni-Heidelberg
Scheduled Data Transfer Scheduler Core Scheduling Discipline IN Events Source OUT TX IN Destinations 1 2 3 New Event Entry • Idle. • Obtain Destination. • Produce a Tag. The Scheduler assigns Time-Slices to Sub-Farms. Deyan Atanasov, Scheduled Data Transfer, CBM DAQ, HD 18.03.04 Ivan Kisel, KIP, Uni-Heidelberg
FCS - Farm Control System • Cluster Interface Agent (CIA) • every node can be (re)configured, turned on/off remotely via Ethernet • it can save hardware components like display cards, Floppy Disk Drives • monitor the whole cluster, every host regardless of its current state with additional monitoring possibilities independent from operating system Control FCS Network Monitor PCI bus Host • The farm implements its own control network • Control over every node is done via a redundant hardware unit attached to the node • The interface between FCS and ECS is done via a dedicated node Experiment Control System Farm Control System Ralf Panse, Farm Control System, CBM DAQ, HD 18.03.04 Ivan Kisel, KIP, Uni-Heidelberg
Distributed Local Mass Storage 1 MB/sec/PC 10 TB/PC = 10 000 000 MB/PC = 10 000 000 sec = 120 days = 4 months of data taking Data Taking 3 Months Data Analysis 9 Months Data Reduction 1000:1 Data Reduction 100:1 Arne Wiebalck, ClusterRAID, CBM DAQ, HD 18.03.04 Lord Hess, ClusterRAID1 Prototype, CBM DAQ, HD 18.03.04 Ivan Kisel, KIP, Uni-Heidelberg
PC Sub-Farm FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA Scheduler Input Data Farm Control System -Farm Sub-Farm Sub-Farm Sub-Farm PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC • Various CPU power • Shared PCs • Reconfigurable • Fault tolerant • Offline on background Ivan Kisel, KIP, Uni-Heidelberg
FPGA: Pre-process/L1 Network In Free/Busy Offline Memory Buffers 500 MB/s/FPGA STS RICH TRD ECAL Local time slice 1 NIC Local time slice 2 Local time slice 3 MAPS Local time slice … Local time slice 99 Local time slice 100 RICH STS TRD ECAL Local time slice i LM/DSP LM/DSP LM/DSP LM/DSP 500 MB/s/FPGA Out MAPS Local time slice i+1 LM/DSP LM/DSP LM/DSP LM/DSP FPGA Pre-process/L1 PCs 10000 ev/s 100 ms/ev Ivan Kisel, KIP, Uni-Heidelberg
CPU: L2/Offline FPGAs In Free/Busy Offline Memory Buffers 500 MB/s/CPU STS RICH TRD ECAL Updated local time slice 1 NIC Updated local time slice 2 Updated local time slice 3 MAPS Updated local time slice … Updated local time slice 99 Updated local time slice 100 CPU L2/Offline 1 MB/s/CPU 300 ev/s 3 ms/ev Storage Ivan Kisel, KIP, Uni-Heidelberg
FPGA 4D Pre-processor/L1 Trigger Reconstruct primary vertex Select detached secondary D tracks Select RoIs of secondary J/y tracks Fit secondary tracks Fit secondary vertices Pre-process/Trigger STS STS ECAL TRD RICH STS STS STS Ivan Kisel, KIP, Uni-Heidelberg
CPU 4D L2 Trigger Improve (m)any of the L1 results: Reconstruct primary vertex Select detached secondary D tracks Select RoIs of secondary J/ytracks Fit secondary tracks Fit secondary vertices Trigger STS STS ECAL TRD RICH STS ECAL TRD RICH STS STS Ivan Kisel, KIP, Uni-Heidelberg
Offline Analysis Improve (m)any of the L2 results: ECAL TRD Reconstruct primary vertex Select detached secondary D tracks Select RoIs of secondary J/y tracks Fit secondary tracks Fit secondary vertices Analysis RICH STS ECAL TRD RICH STS ECAL TRD RICH STS ECAL TRD RICH STS ECAL TRD RICH STS Ivan Kisel, KIP, Uni-Heidelberg
Algorithms Hough Transform Cellular Automaton Elastic Net Kalman Filter Simple Local Parallel Fast Ivan Kisel, KIP, Uni-Heidelberg
Trigger Simulation Ivan Kisel, KIP, Uni-Heidelberg
Summary • Modular structure of DAQ • Online reconfigurable farm • Commercial hardware • Modular software • „All-in-one“ sub-farm • No canonical event building • Access to all data at any stage • 4D event reconstruction • Flexible L1/L2/Offline definition • No need to re-process L1 at L2 • Offline can run/test L1 and L2 • All data on local mass storage • Online alignment • Online database update Ivan Kisel, KIP, Uni-Heidelberg