1 / 12

Ford Fulkerson

Ford Fulkerson. Ford-Fulkerson ( N =( G, c, s, t )) ; G = ( V , E ) for each edge , while exists a path P from s to t in residual network N f do for each edge do return f. דוגמא:. 12. v1. v2. 20. 16. 9. t. 4. 10. s.

rogan-reid
Download Presentation

Ford Fulkerson

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ford Fulkerson

  2. Ford-Fulkerson (N=(G, c, s, t)) ; G = (V, E) for each edge , while exists a path P from s to t in residual network Nfdo for each edge do returnf

  3. דוגמא: 12 v1 v2 20 16 9 t 4 10 s 7 4 13 14 v3 v4 0/12 v1 v2 0/20 0/16 0/9 t s 0/10 0/4 0/7 0/4 0/13 0/14 v3 v4

  4. דוגמא: 12 v1 v2 20 16 9 t 4 10 s 7 4 13 14 v3 v4 4/12 0/12 v1 v2 0/20 0/16 4/16 4/9 0/9 t s 0/10 0/4 0/7 0/4 4/4 0/13 0/14 4/14 v3 v4

  5. דוגמא: 8 v1 v2 12 20 4 5 t 4 4 10 s 7 4 4 13 10 v3 v4 4 4/12 v1 v2 0/20 4/16 4/9 t s 0/10 0/4 0/7 4/4 0/13 4/14 v3 v4

  6. דוגמא: 8 v1 v2 12 20 4 5 t 4 4 10 s 7 4 4 13 10 v3 v4 4 4/12 v1 v2 0/20 7/20 11/16 4/16 4/9 t s 0/10 0/4 7/10 0/7 7/7 4/4 0/13 11/14 4/14 v3 v4

  7. דוגמא: 8 v1 v2 5 13 4 5 7 t 11 11 3 s 7 4 4 13 3 v3 v4 11 4/12 v1 v2 7/20 11/16 4/9 t s 0/4 7/10 7/7 4/4 0/13 11/14 v3 v4

  8. דוגמא: 8 v1 v2 5 13 4 5 7 t 11 11 3 s 7 4 4 13 3 v3 v4 11 12/12 4/12 v1 v2 7/20 15/20 11/16 4/9 t s 0/4 7/10 0/10 1/4 7/7 4/4 0/13 8/13 11/14 v3 v4

  9. דוגמא: 12 v1 v2 5 5 5 15 t 11 s 11 3 7 4 5 4 3 8 v3 v4 11 12/12 v1 v2 15/20 11/16 4/9 t s 0/10 1/4 7/7 4/4 8/13 11/14 v3 v4

  10. דוגמא: 12 v1 v2 5 5 5 15 t 11 s 11 3 7 4 5 4 3 8 v3 v4 11 12/12 v1 v2 15/20 19/20 11/16 4/9 0/9 t s 0/10 1/4 7/7 4/4 12/13 8/13 11/14 v3 v4

  11. דוגמא: 12 v1 v2 5 1 9 19 t 11 s 11 3 7 1 4 3 12 v3 v4 11 12/12 v1 v2 19/20 11/16 0/9 t s 0/10 1/4 7/7 4/4 12/13 11/14 v3 v4

  12. זמן ריצה: • בכל איטרציה: • מחושב מסלול בזמן לפי BFS. • עידכון הזרימה והרשת השיורית . • מספר האיטרציות הוא לכל היותר כגודל הזרימה . • סה''כ .

More Related