370 likes | 569 Views
KATRIN and the Cosmic Neutrino Background. Amand Faessler University of Tuebingen Germany. Amand F aessler, Rastislav Hodak , Sergey Kovalenko , Fedor Simkovic: arXiv : 1304.5632 [ nucl-th ] 20. April 2013. . Cosmic Microwave Background Radiation (Photons in the Maximum 2 mm).
E N D
KATRIN andthe CosmicNeutrino Background Amand Faessler University of Tuebingen Germany Amand Faessler, RastislavHodak, Sergey Kovalenko, Fedor Simkovic: arXiv: 1304.5632 [nucl-th] 20. April 2013.
CosmicMicrowave Background Radiation (Photons in the Maximum 2 mm) Decouplingofthephotonsfrom matter about 300 000 years after the Big Bang,whentheelectronarecapturedbytheprotonsand He4 nucleiandtheuniversegets neutral. Photons movefreely.
Penzias and Wilson; Bell Telephon Nobel Price 1978
Planck SatelliteTemperatureFluctuationsComic Microwave Background (March 21. 2013)
CurvatureoftheUniversflat Weknowthesizeofthehotspots. x x x
The Universeis flat. The densityhasthecriticalvalue: W = 1.00+-0.02 Wecanonlyseetillthesphereofthethe last photon-electronscattering: ~14 x1012 lightyears
Microwave Background Radiation Experiment Black bodyradiation. Temperatureadjusted (pdg 2012): T=2.7255(6) K T = 2.7255(6) Kelvin
The relative numberabundanceofthe light nucleiformed in thebig bang allowstodeterminethe absolute baryondensityand relative tothecriticaldensity (flat universe). h = 0.71 h2 = 0.5 Hubble-Konstant= H = 100 h [km/(sec Mpc)] WBh2 = 0.02 WBaryon = rBaryon/rcritical = 0.02h-2 = 0.04 nB = 0.22 m-3 eB = 210 MeV/m-3
Decouplingof Photons and Neutrinos from Matter „Re“-combinationofElectronswithProtons anda-Particles (1g out of 1.7x109 fromuppertail) 3000 Kelvin; 300 000 years after Big Bang; e- + p neutral Hydrogen-Atom 2e- + a neutral Helium-Atom Photons movefreelysince 14x1012years. Last sphereofscattering: Radius = 14x1012lightyears. Today Tg = 2.7255(6) Kelvin independentofthedirection.
Neutrino Decoupling and Cosmic Neutrino Background Formassless-massive Neutrinos:
Estimateof Neutrino Decoupling Universe Expansion rate: H=(da/dt)/a • ~ n Interaction rate: G= ne-e+<svrelative> H = \sqrt{8p G rtotal /3} = \sqrt{8 pr/(3 MPlanck2)} = = O(T2) [1/time] G ~ T3 <GF2 p2 c=1> = T3 GF2 T2 = GF2T5 [Energy = 1/time] hbar = h/(2p) = c = 1
Neutrino Decoupling G/H = ( kB T/ 1MeV)3 ~ 1 T(Neutrinos)decoupl ~ 1MeV ~ 1010 Kelvin; Today: 1.95 K Time after Big Bang: 1 Second Below T = 1 MeV: T(Photons)decoupling = 3000 Kelvin; heute: 2.7255 K Time(Photons)decoupling = 300 000 years
(Energy=Mass)-DensityoftheUniverse Radiation dominated: r ~ 1/a4 ~ =Stefan-Boltzmann log r Matter dominated: r ~ 1/a3 ~ T3 Dark Energy a(t)~1/T 1/Temp 8x109 y 1 MeV 1sec ndec. Tg = 2.7255 K Tn = 1.95 K 3000 K 300 000 y gdec. 1 eV 3x104y heute
Tranformation from Mass to Flavor Eigenstates Hamburg, March 3. 2008.
Mass of the Electron Neutrino?Tritium decay (Mainz + Troisk) With: Hamburg, March 3. 2008.
Measurement oftheupper Limit ofthe Neutrino Mass in Mainz: mn < 2.2 eV 95% C.L. Kurie-Plot Eur. Phys. J. C40 (2005) 447 mn2 <0 mn2>0 ElectronEnergy Q = 18.562 keV
Negatives SquaresoftheMeasuredNeutrino Masses Ch. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick, E. W. Otten, J. P. Schall, Th. Thümmler, Ch Weinheimer: Eur. Phys. J. C40 (2005) 447-468.
AnihilationofRelic Neutrinos with extreme High Energy Neutrinos > 1022eV nrelic Neutrino E = 4x1022 eV EnergyMomentumconservation: n1(GZK,4x1022eV) + n2(CB) • Z0(4x1022eV)burst • 10p0, 2 nucleons, 17 p+- Z0 Above GZK DGZK=50Mpc Anihilationbelow Greisen-Zatsepin-Kuzmin Radius of 50 Mpc
Free magneticfloatingcylinderwith half n absorbing material Permanent Magnet The systemrotates 90 degrees. Superconducting Magnet One half n absorbing, theother sterile. Balanced. Thomas Müller pointedthis out tome. A. Ringwald: arXiv:hep-ph/031157v1; 2003. Cylindershaped
SearchforCosmic Neutrino Background CnBby Beta decay (KATRIN): Tritium Kurie-Plot of Beta andinduced Beta Decay: n(CB)+ 3H(1/2+) 3He (1/2+) + e- Infinite goodresolution Q = 18.562 keV Resolution Mainz: 4 eV mn < 2.3 eV Emittedelectron Resolution KATRIN: 0.93 eV mn < 0.2 eV 90% C.L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses
SearchforCosmic Neutrino Background CnBby Beta decay: 187Re Infinite goodresolution Kurie-Plot ofbetaandinducedbetaDecay: n(CB)+ 18775Re112(5/2+) 18776Os111(1/2-) + e- Q = 2.460 keV MARE-Genova: DE ~ 11 eV mn ~ 2 eV 90% C.L. Milano-Bicocca: DE ~24 eV mn ~ 3-4 eV Emittedelectron ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses
Neutrino Capture: n(relic) + 3H 3He + e- 20 mg(eff) of Tritium 2x1018 T2-Molecules: Nncapture(KATRIN) = 1.7x10-6nn/<nn> [year-1] Every 590 000 years a count!! for <nn> = 56 cm-3
Kaboth, Formaggio, Monreal: Phys. Rev. D82 (2010) 06200166 mg(eff) ofTritium 6.6x1018 T2-Molecules:Nncapture(KATRIN) =5.5x10-6nn/<nn> (year-1)Every 180 000 years a count. (Fornn = <nn>) Faessler et al.: J. Phys. G38 (2011) 075202 50mg(eff)ofTritium 5x1018 T2-Molecules Nncapture(KATRIN) = 4.2x10-6nn/<nn>(year-1) Every 240 000 years a counts.(Fornn= <nn>) DrexlinApril 2013: 20mg(eff)ofTritium 2x1018 T2-Molecules Nncapture(KATRIN) = 1.7x10-6nn/<nn>(year-1) Every 590 000 years a counts.(Fornn= <nn>)
Two Problems Numberof Events withaverage Neutrino Densityofnne= 56 [ Electron-Neutrinos/cm-3] Katrin: 1 Count in 590 000 Years Gravitational Clustering of Neutrinos!!!??? 2. Energy Resolution (KATRIN) DE ~ 0.93 eV Kurie-Plot Emittedelectron Resolution KATRIN: 0.93 eV mn < 0.2 eV 90% C.L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses
Gravitational Clustering of Dark Matter and Neutrinos in Galaxies Dunkle Materie ? Faktum erwartet Was kompensiert die Zentrifugalkraft?
Gravitational Clustering of Neutrinos A. Ringwald, Y. Wong: arXiv:hep-ph/0408241; solvedVlasoveq. forn; Dark Matter from Navarro et al. Ap J490 (1997) 493 VirialMass: Mvir = 5v2R/G; v = velocity in sight Circles: 1h-1kpc; Pentagons: 10h-1kpc; Squares: 100h-1kpc; Triangles 1000h-1kpc. h-1 = 1.4 The solar systemis 8 kpc = 24 000 lyfromthegalacticcenter.
Gravitational Clustering of Neutrinos Light neutrinos: Gravitateonly on Mpc (50 MpcGalaxyCluster) scale: nn/<nn> ~ nb/<nb> ~ 103 – 104; <nb>= 0.22 10-6 cm-3 R.Lazauskas,P. Vogel andC.Volpe, J. Phys.g. 35 (2008) 025001; A. Ringwald and Y. Wong: Vlasovtrajectorysimulations Clustering on GalacticScalepossiblenn/<nn> = nb/<nb> ~ 106 ; (R = 30 kpc) Nncapture(KATRIN) = 1.7x10-6nn/<nn> (year-1) = 1.7 (170 for 2 milligram) [counts per year] R. Wigmans, AstroparticlePhysics 19 (2003) 379 discussesupto: nn/<nn> = 1013 but forusunrealistic.
n Capture: ne(relic) + 18775Re(5/2)+18776Os(1/2)- + e-MARE Genova and Milano Main Contribution: n s(1/2); e- p(3/2) 760 gramsof AgReO4Nncapture(MARE) = 6.7x10-8nn/<nn> [year-1] Fornn = <nn>: Every 15 Million years a count. For: nn/<nn> = 106: Every 15 years a count. (KATRIN: 1.7 per year)
Summary 1 • The CosmicMicrowave Background allowstostudytheUniverse 300 000 year after the BB. • The Cosmic Neutrino Background 1 sec after the Big Bang (BB): Tn(today) = 1.95 Kelvin. • Extremlydifficulttodetect: Small Cross SectionandlowDensity 56 n‘s/cm3andlowEnergies (1.95 Kelvin = 2x10-4 eV).
Summary 2 Average Density: nne= 56 [ Electron-Neutrinos/cm-3] Katrin (20 mg eff. mass3H): 1 Count in 590 000 Years Gravitational Clustering of Neutrinosnn/<nn> < 106 1.7 counts (2 milligramof3H 170 counts) per year. 2. Measureonly an upperlimitofnn ENDE Kurie-Plot Emittedelectron Resolution KATRIN: .93 eV mn < 0.2 eV 90% C.L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses