1 / 34

KATRIN and the Cosmic Neutrino Background

KATRIN and the Cosmic Neutrino Background. Amand Faessler University of Tuebingen Germany. Amand F aessler, Rastislav Hodak , Sergey Kovalenko , Fedor Simkovic: arXiv : 1304.5632 [ nucl-th ] 20. April 2013. . Cosmic Microwave Background Radiation (Photons in the Maximum 2 mm).

roman
Download Presentation

KATRIN and the Cosmic Neutrino Background

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KATRIN andthe CosmicNeutrino Background Amand Faessler University of Tuebingen Germany Amand Faessler, RastislavHodak, Sergey Kovalenko, Fedor Simkovic: arXiv: 1304.5632 [nucl-th] 20. April 2013.

  2. CosmicMicrowave Background Radiation (Photons in the Maximum 2 mm) Decouplingofthephotonsfrom matter about 300 000 years after the Big Bang,whentheelectronarecapturedbytheprotonsand He4 nucleiandtheuniversegets neutral. Photons movefreely.

  3. Penzias and Wilson; Bell Telephon Nobel Price 1978

  4. Planck SatelliteTemperatureFluctuationsComic Microwave Background (March 21. 2013)

  5. CurvatureoftheUniversflat Weknowthesizeofthehotspots. x x x

  6. The Universeis flat. The densityhasthecriticalvalue: W = 1.00+-0.02 Wecanonlyseetillthesphereofthethe last photon-electronscattering: ~14 x1012 lightyears

  7. Microwave Background Radiation Experiment Black bodyradiation. Temperatureadjusted (pdg 2012): T=2.7255(6) K T = 2.7255(6) Kelvin

  8. The relative numberabundanceofthe light nucleiformed in thebig bang allowstodeterminethe absolute baryondensityand relative tothecriticaldensity (flat universe). h = 0.71 h2 = 0.5 Hubble-Konstant= H = 100 h [km/(sec Mpc)] WBh2 = 0.02 WBaryon = rBaryon/rcritical = 0.02h-2 = 0.04 nB = 0.22 m-3 eB = 210 MeV/m-3

  9. Planck‘s Black Body Radiation

  10. Decouplingof Photons and Neutrinos from Matter „Re“-combinationofElectronswithProtons anda-Particles (1g out of 1.7x109 fromuppertail)  3000 Kelvin; 300 000 years after Big Bang; e- + p neutral Hydrogen-Atom 2e- + a neutral Helium-Atom Photons movefreelysince 14x1012years. Last sphereofscattering: Radius = 14x1012lightyears. Today Tg = 2.7255(6) Kelvin independentofthedirection.

  11. Neutrino Decoupling and Cosmic Neutrino Background Formassless-massive Neutrinos:

  12. Estimateof Neutrino Decoupling Universe Expansion rate: H=(da/dt)/a • ~ n Interaction rate: G= ne-e+<svrelative> H = \sqrt{8p G rtotal /3} = \sqrt{8 pr/(3 MPlanck2)} = = O(T2) [1/time] G ~ T3 <GF2 p2 c=1> = T3 GF2 T2 = GF2T5 [Energy = 1/time] hbar = h/(2p) = c = 1

  13. Neutrino Decoupling G/H = ( kB T/ 1MeV)3 ~ 1 T(Neutrinos)decoupl ~ 1MeV ~ 1010 Kelvin; Today: 1.95 K Time after Big Bang: 1 Second Below T = 1 MeV: T(Photons)decoupling = 3000 Kelvin; heute: 2.7255 K Time(Photons)decoupling = 300 000 years

  14. (Energy=Mass)-DensityoftheUniverse Radiation dominated: r ~ 1/a4 ~ =Stefan-Boltzmann log r Matter dominated: r ~ 1/a3 ~ T3 Dark Energy a(t)~1/T 1/Temp 8x109 y 1 MeV 1sec ndec. Tg = 2.7255 K Tn = 1.95 K 3000 K 300 000 y gdec. 1 eV 3x104y heute

  15. Tranformation from Mass to Flavor Eigenstates Hamburg, March 3. 2008.

  16. Mass of the Electron Neutrino?Tritium decay (Mainz + Troisk) With: Hamburg, March 3. 2008.

  17. Measurement oftheupper Limit ofthe Neutrino Mass in Mainz: mn < 2.2 eV 95% C.L. Kurie-Plot Eur. Phys. J. C40 (2005) 447 mn2 <0 mn2>0 ElectronEnergy Q = 18.562 keV

  18. Negatives SquaresoftheMeasuredNeutrino Masses Ch. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick, E. W. Otten, J. P. Schall, Th. Thümmler, Ch Weinheimer: Eur. Phys. J. C40 (2005) 447-468.

  19. AnihilationofRelic Neutrinos with extreme High Energy Neutrinos > 1022eV nrelic Neutrino E = 4x1022 eV EnergyMomentumconservation: n1(GZK,4x1022eV) + n2(CB) • Z0(4x1022eV)burst • 10p0, 2 nucleons, 17 p+- Z0 Above GZK DGZK=50Mpc Anihilationbelow Greisen-Zatsepin-Kuzmin Radius of 50 Mpc

  20. Cosmic Radiation fromZ-Burst expectedat 1021 -1022eV

  21. Free magneticfloatingcylinderwith half n absorbing material Permanent Magnet The systemrotates 90 degrees. Superconducting Magnet One half n absorbing, theother sterile. Balanced. Thomas Müller pointedthis out tome. A. Ringwald: arXiv:hep-ph/031157v1; 2003. Cylindershaped

  22. SearchforCosmic Neutrino Background CnBby Beta decay (KATRIN): Tritium Kurie-Plot of Beta andinduced Beta Decay: n(CB)+ 3H(1/2+)  3He (1/2+) + e- Infinite goodresolution Q = 18.562 keV Resolution Mainz: 4 eV  mn < 2.3 eV Emittedelectron Resolution KATRIN: 0.93 eV  mn < 0.2 eV 90% C.L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses

  23. SearchforCosmic Neutrino Background CnBby Beta decay: 187Re Infinite goodresolution Kurie-Plot ofbetaandinducedbetaDecay: n(CB)+ 18775Re112(5/2+)  18776Os111(1/2-) + e- Q = 2.460 keV MARE-Genova: DE ~ 11 eV  mn ~ 2 eV 90% C.L. Milano-Bicocca: DE ~24 eV  mn ~ 3-4 eV Emittedelectron ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses

  24. Tritium Beta Decay: 3H 3He+e-+nce

  25. Neutrino Capture: n(relic) + 3H 3He + e- 20 mg(eff) of Tritium  2x1018 T2-Molecules: Nncapture(KATRIN) = 1.7x10-6nn/<nn> [year-1] Every 590 000 years a count!! for <nn> = 56 cm-3

  26. Kaboth, Formaggio, Monreal: Phys. Rev. D82 (2010) 06200166 mg(eff) ofTritium 6.6x1018 T2-Molecules:Nncapture(KATRIN) =5.5x10-6nn/<nn> (year-1)Every 180 000 years a count. (Fornn = <nn>) Faessler et al.: J. Phys. G38 (2011) 075202 50mg(eff)ofTritium  5x1018 T2-Molecules Nncapture(KATRIN) = 4.2x10-6nn/<nn>(year-1) Every 240 000 years a counts.(Fornn= <nn>) DrexlinApril 2013: 20mg(eff)ofTritium  2x1018 T2-Molecules Nncapture(KATRIN) = 1.7x10-6nn/<nn>(year-1) Every 590 000 years a counts.(Fornn= <nn>)

  27. Two Problems Numberof Events withaverage Neutrino Densityofnne= 56 [ Electron-Neutrinos/cm-3] Katrin: 1 Count in 590 000 Years Gravitational Clustering of Neutrinos!!!??? 2. Energy Resolution (KATRIN) DE ~ 0.93 eV Kurie-Plot Emittedelectron Resolution KATRIN: 0.93 eV  mn < 0.2 eV 90% C.L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses

  28. Gravitational Clustering of Dark Matter and Neutrinos in Galaxies Dunkle Materie ? Faktum erwartet Was kompensiert die Zentrifugalkraft?

  29. Gravitational Clustering of Neutrinos A. Ringwald, Y. Wong: arXiv:hep-ph/0408241; solvedVlasoveq. forn; Dark Matter from Navarro et al. Ap J490 (1997) 493 VirialMass: Mvir = 5v2R/G; v = velocity in sight Circles: 1h-1kpc; Pentagons: 10h-1kpc; Squares: 100h-1kpc; Triangles 1000h-1kpc. h-1 = 1.4 The solar systemis 8 kpc = 24 000 lyfromthegalacticcenter.

  30. Gravitational Clustering of Neutrinos Light neutrinos: Gravitateonly on Mpc (50 MpcGalaxyCluster) scale: nn/<nn> ~ nb/<nb> ~ 103 – 104; <nb>= 0.22 10-6 cm-3 R.Lazauskas,P. Vogel andC.Volpe, J. Phys.g. 35 (2008) 025001; A. Ringwald and Y. Wong: Vlasovtrajectorysimulations Clustering on GalacticScalepossiblenn/<nn> = nb/<nb> ~ 106 ; (R = 30 kpc) Nncapture(KATRIN) = 1.7x10-6nn/<nn> (year-1) = 1.7 (170 for 2 milligram) [counts per year] R. Wigmans, AstroparticlePhysics 19 (2003) 379 discussesupto: nn/<nn> = 1013 but forusunrealistic.

  31. n Capture: ne(relic) + 18775Re(5/2)+18776Os(1/2)- + e-MARE Genova and Milano Main Contribution: n s(1/2); e-  p(3/2) 760 gramsof AgReO4Nncapture(MARE) = 6.7x10-8nn/<nn> [year-1] Fornn = <nn>: Every 15 Million years a count. For: nn/<nn> = 106: Every 15 years a count. (KATRIN: 1.7 per year)

  32. Summary 1 • The CosmicMicrowave Background allowstostudytheUniverse 300 000 year after the BB. • The Cosmic Neutrino Background 1 sec after the Big Bang (BB): Tn(today) = 1.95 Kelvin. • Extremlydifficulttodetect: Small Cross SectionandlowDensity 56 n‘s/cm3andlowEnergies (1.95 Kelvin = 2x10-4 eV).

  33. Summary 2 Average Density: nne= 56 [ Electron-Neutrinos/cm-3] Katrin (20 mg eff. mass3H): 1 Count in 590 000 Years Gravitational Clustering of Neutrinosnn/<nn> < 106  1.7 counts (2 milligramof3H  170 counts) per year. 2. Measureonly an upperlimitofnn ENDE Kurie-Plot Emittedelectron Resolution KATRIN: .93 eV  mn < 0.2 eV 90% C.L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses

More Related