1 / 21

Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN).

Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN). Amand Faessler University of Tuebingen Germany. Publication : Amand F aessler, Rastislav Hodak , Sergey Kovalenko , Fedor Simkovic: arXiv : 1304.5632 [ nucl-th ] 20. April 2013. .

miron
Download Presentation

Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN).

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Search fortheCosmicNeutrino Background andtheNuclear Beta Decay (KATRIN). Amand Faessler University of Tuebingen Germany Publication: Amand Faessler, RastislavHodak, Sergey Kovalenko, Fedor Simkovic: arXiv: 1304.5632 [nucl-th] 20. April 2013.

  2. CosmicMicrowave Background Radiation (Photons in the Maximum 2 mm) Decouplingofthephotonsfrom matter about 300 000 years after the Big Bang, whentheelectronsarecapturedbytheprotonsand He4 nucleiandtheuniversegets neutral. Photons movefreely.

  3. Microwave Background Radiation Penzias and Wilson; BellTelephon Nobel Price 1978

  4. Planck SatelliteTemperatureFluctuationsComic Microwave Background (March 21. 2013)

  5. CurvatureoftheUniversflat Weknowthesizeofthehotspots. x x x

  6. Microwave Background Radiation Experiment Black bodyradiation. Temperatureadjusted (pdg 2012): T=2.7255(6) K T = 2.7255(6) Kelvin

  7. Planck‘s Black Body Radiation

  8. Neutrino Decoupling and Cosmic Neutrino Background Formassless-massive Neutrinos:

  9. Estimateof Neutrino Decoupling Universe Expansion rate: H=(da/dt)/a • ~ n Interaction rate: G= ne-e+<svrelative> H = \sqrt{8p G rtotal /3} = \sqrt{8 pr/(3 MPlanck2)}[1/time] G ~ T3 <GF2 p2 c=1> = T3 GF2 T2 = GF2 T5 [Energy = 1/time] hbar = h/(2p) = c = 1

  10. Neutrino Decoupling G/H = ( kB T/ 1MeV)3 ~ 1 T(Neutrinos)decoupl ~ 1MeV ~ 1010 Kelvin; today: 1.95 K Time after Big Bang: 1 Second Below T = 1 MeV: T(Photons)decoupling = 3000 Kelvin; today: 2.7255 K Time(Photons)decoupling = 300 000 years

  11. (Energy=Mass)-DensityoftheUniverse Radiation dominated: r ~ 1/a4 ~ =Stefan-Boltzmann log r Matter dominated: r ~ 1/a3 ~ T3 Dark Energy a(t)~1/T 1/Temp 8x109 y 1 MeV 1sec ndec. g 2.7255 K n 1.95 K 3000 K 300 000 y gdec. 1 eV 3x104y today

  12. Tranformation from Mass to Flavor Eigenstates Hamburg, March 3. 2008.

  13. Mass of the Electron Neutrino?Tritium decay (Mainz + Troisk) With: Hamburg, March 3. 2008.

  14. Measurement oftheupper Limit ofthe Neutrino Mass in Mainz: mn < 2.2 eV 95% C.L. Kurie-Plot Eur. Phys. J. C40 (2005) 447 mn2 <0 mn2>0 ElectronEnergy Q = 18.562 keV

  15. SearchforCosmic Neutrino Background CnBby Beta decay: Tritium Kurie-Plot of Beta andinduced Beta Decay: n(CB)+ 3H(1/2+)  3He (1/2+) + e- Infinite goodresolution Q = 18.562 keV Resolution Mainz: 4 eV  mn < 2.3 eV Emittedelectron Resolution KATRIN: 0.93 eV  mn < 0.2 eV 90% C. L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses

  16. Tritium Beta Decay: 3H 3He+e-+nce

  17. Neutrino Capture: n(relic) + 3H 3He + e- 20 mg(eff) of Tritium  2x1018 T2-Molecules: Nncapture(KATRIN) = 1.7x10-6nn/<nn> [year-1] Every 590 000 years a count!! for <nn> = 56 cm-3

  18. Two Problems Numberof Events withaverage Neutrino Densityofnne= 56 [ Electron-Neutrinos/cm-3] Katrin: 1 Count in 590 000 Years Gravitational Clustering of Neutrinos!!!??? 2. Energy Resolution (KATRIN) DE ~ 0.93 eV Kurie-Plot Emittedelectron Resolution KATRIN: 0.93 eV  mn < 0.2 eV 90% C.L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses

  19. Gravitational Clustering of Neutrinos Light neutrinos: Gravitateonly on Mpc (GalaxyCluster) scale: nn/<nn> ~ nb/<nb> ~ 103 – 104; <nb>= 0.22 10-6 cm-3 R.Lazauskas,P. Vogel andC.Volpe, J. Phys.g. 35 (2008) 025001; A. Ringwald and Y. Wong: Vlasovtrajectorysimulations Clustering on GalacticScalepossiblenn/<nn> = nb/<nb> ~ 106 ; (R = 30 kpc) Nncapture(KATRIN) = 1.7x10-6nn/<nn> (year-1) = 1.7 [counts per year] Effective Tritium Source: 20 microgram 2 milligram Nncapture(KATRIN*) = 1.7x10-4nn/<nn> (year-1) = 170 [counts per year]

  20. Summary 1 • The CosmicMicrowave Background allowstostudytheUniverse 300 000 year after the BB. • The Cosmic Neutrino Background 1 sec after the Big Bang (BB): Tn(today) = 1.95 Kelvin. • Extremlydifficulttodetect: Small Cross SectionandlowDensity 56 n‘s/cm3andlowEnergies (1.95 Kelvin = 2x10-4 eV).

  21. Summary 2 Average Density: nne= 56 [ Electron-Neutrinos/cm-3] Katrin: 1 Count in 590 000 Years Gravitational Clustering of Neutrinosnn/<nn> < 106  1.7 counts per year (2 milligram3H 170 per year) 2. Measureonly an upperlimitofnn ENDE Kurie-Plot Emittedelectron Resolution KATRIN: 0.93 eV  mn < 0.2 eV 90% C.L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses

More Related