1 / 28

Background

Last review on disk chemistry in Protostars and Planets : Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing timescale - constraints and goals … composition of solar system materials. Background. Since then….

ros
Download Presentation

Background

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Last review on disk chemistry in Protostars and Planets: Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing timescale - constraints and goals … composition of solar system materials Background Since then… • Spectroscopic observation of disks in mm, sub-mm, infrared • e.g. Dutrey et al., Najita et al. • Detailed models of disk structure • e.g. Dullemond et al.

  2. Outline • General Theoretical Picture - disk structure - key ingredients: UV, X-ray, Cosmic-ray • Observations - mm & sub-mm - infrared • Chemical-Physical Likns - thermal structure - grain evolution - ionization degree - mixing • Deuterium Chemistry and Comets • Future

  3. General Theoretical Picture three-layer model (i)photon-dominant layer UV & X-ray irradiation low density (nH< 105cm-3) high temperature (T > several 10 K) vertical distribution @ r ~300 AU -4 -6 log n(i)/nH -8 -10 -12 0 100 200 300 400 height from midplane [AU] Aikawa & Herbst (1999) Willacy & Langer (2000) Aikawa et al. (2002) van Zadelhoff et al. (2003)

  4. General Theoretical Picture three-layer model (i)photon-dominant layer UV & X-ray irradiation low density (nH< 105cm-3) high temperature (T > several 10 K) (ii) warm molecular layer high density (nH> 105cm-3) moderate temperature (T > 20 K) vertical distribution @ r ~300 AU -4 -6 log n(i)/nH -8 -10 -12 0 100 200 300 400 height from midplane [AU] Aikawa & Herbst (1999) Willacy & Langer (2000) Aikawa et al. (2002) van Zadelhoff et al. (2003)

  5. General Theoretical Picture three-layer model (i)photon-dominant layer UV & X-ray irradiation low density (nH< 105cm-3) high temperature (T > several 10 K) (ii) warm molecular layer high density (nH> 105cm-3) moderate temperature (T > 20 K) (iii) midplane freeze-out layer very high density (nH> 107cm-3) low temperature (T < 20 K) vertical distribution @ r ~300 AU -4 -6 log n(i)/nH -8 -10 -12 0 100 200 300 400 height from midplane [AU] cf. Observation (Dutrey et al. 1997) : - high CN/HCN ratio - low abundance of gaseous molecules Aikawa & Herbst (1999) Willacy & Langer (2000) Aikawa et al. (2002) van Zadelhoff et al. (2003)

  6. General Theoretical Picture three-layer model (i)photon-dominant layer UV & X-ray irradiation low density (nH< 105cm-3) high temperature (T > several 10 K) (ii) warm molecular layer high density (nH> 105cm-3) moderate temperature (T > 20 K) (iii) midplane freeze-out layer very high density (nH> 107cm-3) low temperature (T < 20 K) (iv) inside snow line (r < 10 AU) thermal desorption “hot core” like chemistry (Najita et al. talk; Markwick et al. 2002; Ilgner et al. 2004) vertical distribution @ r ~300 AU -4 -6 log n(i)/nH -8 -10 -12 0 100 200 300 400 height from midplane [AU] Aikawa & Herbst (1999) Willacy & Langer (2000) Aikawa et al. (2002) van Zadelhoff et al. (2003)

  7. Key ingredients • X-rays from central star • excite molecules (Tine et al. 1997) • ionization (Glassgold et al. 1997) • induce UV photons (Bergin et al. 2005) • non-thermal desorption (Najita et al. 2001) enhance HCN, CN, HCO+ (Aikawa & Herbst 1999; 2001;Markwick et al. 2002) r=700AU 10-15 Lx=1031 erg/s 1030 erg/s ionization rate [s-1] F (erg cm-2 s-1 Å-1) X-ray induced UV ? 10-16 1029 erg/s 1028 erg/s height from midplane [AU] wavelength (Å)

  8. Key ingredients • X-rays from central star • excite molecules (Tine et al. 1997) • ionization (Glassgold et al. 1997) • induce UV photons (Bergin et al. 2005) • non-thermal desorption (Najita et al. 2001) enhance HCN, CN, HCO+ (Aikawa & Herbst 1999; 2001;Markwick et al. 2002) local hot spot ejected molecules -5 CO X-ray desorption X-ray -7 only thermal HCN log n(i)/nH -9 CN -11 grain aggregate -13 0 20 40 60 80 height from midplane [AU]

  9. Key ingredients • Cosmic-rays • ionization … driving force for chemistry in molecular clouds • - attenuation length 96 g cm-2 (Umebayashi & Nakano 1981) • - scattered by magnetic field ?? • non-thermal desorption

  10. Key ingredients • UVfrom central star and interstellar field • photo-dissociation and ionization • - require 2D radiation transfer with scattering (van Zadelhoff et al. 2003) • - contribution of Lya line (Bergin et al. 2003; 2006) • photo-desorption -4 1+1D interstellar UV -6 stellar UV log n(i)/nH -8 -10 -12 2D scatter -6 scattering -8 log n(i)/nH -10 -12 height from midplane [AU]

  11. Ly  0 C III -2 Log10 F (at 100 AU) (erg cm-2 s-1 Å-1) -4 1250 1200 wavelength (Å) Key ingredients • UVfrom central star and interstellar field • photo-dissociation and ionization • - require 2D radiation transfer with scattering (van Zadelhoff et al. 2003) • - contribution of Lya line (Bergin et al. 2003; 2006) • photo-desorption -4 CO -5 strong La -6 log n(i)/nH -7 H2O -8 weak La -9 height from midplane [AU]

  12. Sigle Dish Observation Detected species: Gas-Phase radio: - neutral: H2, CO, CN, HCN, CS, H2CO, C2H, - ion: HCO+, N2H+, H2D+, - deuterated: HDO, H2D+, DCN mid-IR: C2H2, HCN, CO2 NIR: CO, H2O (Najita et al.) Optical: OI Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO2, NH4+ Dutrey et al. (1997), IRAM 30m - trace r > several 10 AU - high CN/HCN ratio - low abundance of gaseous molecules

  13. Interferometer -less dilution - imaging Observation Detected species: Gas-Phase radio: - neutral: H2, CO, CN, HCN, CS, H2CO, C2H, - ion: HCO+, N2H+, H2D+, - deuterated: HDO, H2D+, DCN mid-IR: C2H2, HCN, CO2 NIR: CO, H2O (Najita et al.) Optical: OI Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO2, NH4+ NT(CS) = 1013-1014 cm-2 Upper limits only for H2S,SO,SO2 CS dominant

  14. Observation Detected species: Gas-Phase radio: - neutral: H2, CO, CN, HCN, CS, H2CO, C2H, - ion: HCO+, N2H+, H2D+, - deuterated: HDO, H2D+, DCN mid-IR: C2H2, HCN, CO2 NIR: CO, H2O (Najita et al.) Optical: OI Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO2, NH4+ Lahuis et al. (2006), Spitzer - T > 300 K - r << 100 AU - n(i)/nH=10-6-10-5 cf. Markwick et al. (2001)

  15. Observation Detected species: Gas-Phase radio: - neutral: H2, CO, CN, HCN, CS, H2CO, C2H, - ion: HCO+, N2H+, H2D+, - deuterated: HDO, H2D+, DCN mid-IR: C2H2, HCN, CO2 NIR: CO, H2O (Najita et al.) Optical: OI double-peak  disk rotation Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO2, NH4+ Acke et al. (2005) - traces disk surface at r < 1AU ~

  16. Observation Detected species: Gas-Phase radio: - neutral: H2, CO, CN, HCN, CS, H2CO, C2H, - ion: HCO+, N2H+, H2D+, - deuterated: HDO, H2D+, DCN mid-IR: C2H2, HCN, CO2 NIR: CO, H2O (Najita et al.) Optical: OI LkHa330 PHA PHA Silicate Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO2, NH4+ Geers et al. (2006) - r = 10-100 AU - in 50% of Herbig Ae 15 % of T Tauri stars  long timescale for settling and growth

  17. Observation Detected species: Gas-Phase radio: - neutral: H2, CO, CN, HCN, CS, H2CO, C2H, - ion: HCO+, N2H+, H2D+, - deuterated: HDO, H2D+, DCN mid-IR: C2H2, HCN, CO2 NIR: CO, H2O (Najita et al.) Optical: OI Pontoppidan et al. (2005) Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice H2O, CO, CO2, NH4+ edge-on disk - ice absorption bands against scattered light and warm dust emission - upto 50 % of CO2 and H2O are in disk

  18. Chemical-Physical Links: gas thermal structure Tgas and Tdust are not necessarily equal. heating cooling dust radiation from thermal radiation star or upper layer gas UV (photo-electric) lines (C+, CI, OI …) gas-dust collision gas-dust collision (Dullemond et al.; Inga & Dullemond 2004; Junkheid et al. 2004) • energy balance and chemistry have be solved simultaneously • density distribution is determined by Tgas  Self-consistent calc of Tgas, Tdust, and density distribution (Nomura & Millar 2005) • Tgas > Tdust at the surface layer  extended disk “atmosphere” • no hot finger (?)

  19. > ~ ISM dust amax=1mm D’Alessio et al. (2001) Chemical-Physical Links: Grain Growth • Grains must coagulate & sediment to make planets • calculation of coagulation equation • (Weidenschiling@PPII, Dullemond & Dominik 2005, Tanaka et al. 2005) • SEDs and disk images are better reproduced with amax 1 mm • (Miyake & Nakagawa 1995; D’Alessio et al. 2001; Chiang et al. 2001) •  dust opacity decreases at UV wavelength

  20. Chemical-Physical Links: Grain Growth • As dust grows… • UV penetrates deeper into the disk •  T @intermediate height increases • Photoelectric heating becomes less efficient •  T @disk surface decreases •  disk is less flared-up • Molecular layer is pushed down to lower heights Junkheid et al. (2004) Aikawa & Nomura (2006)

  21. Chemical-Physical Links: ion fraction • Angular momentum transport by Magneto-Rotational Instability • - magnetic field decouples if ionization degree (xe) is too low • - accretion and turbulence may be active only on disk surface Gammie (1996)

  22. Chemical-Physical Links: ion fraction • Angular momentum transport by Magneto-Rotational Instability • - magnetic field decouples if ionization degree (xe) is too low • - accretion and turbulence may be active only on disk surface photoionization of H: xe > 104 photoionization of C: xe~ 104 Cosmic-ray and X-ray ionization: xe~ 10-11 - 10-6 HCO+, H3+ Cosmic-ray and Radionucleide: r < 3AU 3 AU < r < 60 AU r > 60 AU xe< 10-12 xe~ 10-12 xe> 10-11 Metal+/grain HCO+/grain H3+ & D3+ (Sano et al. 2000; Semenov et al. 2004) agreement with simple chemistry ?? -> TED

  23. Chemical-Physical Links: mixing • Three must be some mixing in the disks, because… • - angular mom. transport by turbulent viscosity • - crystalline silicate in disks and comets • - refractory inclusions in meteorites • Chemistry is modified if tmix < tchem: tmix ~tvis ?(cf. Carballido et al. 2005) Stationary z-mixing Advection &r-mixing 1.0 Z/Zmax Semenov et al. (2006) in prep • Three-layer structure is preserved • because tchem is small in the surface • and midplane • Species formed on grains (ex. H2CO) • are enhanced by vertical mixing • Ionization fraction is not modified CS 0.1 NH3 H2CO electron see also Willay et al. and Ilgner et al. 10 100 R [AU]

  24. Deuterium chemistry in disks • Isotopic fractionations in comets and meteorites • D/H enrichment in low temperature • - D-H exchange reactions • H3+ + HD  H2D+ + H2 + 230K • H2D+ + CO  HCO+ + HD • H2D+ + e  H2 + D • - Further enhancement by CO depletion survival of interstellar matter ? nebula process ?

  25. Deuterium chemistry in disks Detection of deuterated species in disks ! species col [cm-2] D/H object DCO+ 3x1011 0.035 TW Hya HDO (0.064) LkCa15 8x1012 (1x10-3) DM Tau DCN (< 2x10-3) LkCa15 o-H2D+ 4x1012 DM Tau 6x1013 TW Hya H2D+ TW Hya van Dishoeck et al. (2003), Kessler et al. (2003), Caccarelli. et al. (2004; 2005), DM Tau TW Hya HDO

  26. Deuterium chemistry in disks Detection of deuterated species in disks ! species col [cm-2] D/H object DCO+ 3x1011 0.035 TW Hya HDO (0.064) LkCa15 8x1012 (1x10-3) DM Tau DCN (< 2x10-3) LkCa15 o-H2D+ 4x1012 DM Tau 6x1013 TW Hya van Dishoeck et al. (2003), Kessler et al. (2003), Caccarelli. et al. (2004; 2005), Model: - High D/H right above the midplane - Midplane is traced by H3+, H2D+, HD2+, D3+  grain size & ionization rate Ceccarelli & Dominik (2005)

  27. species col [cm-2] D/H object DCO+ 3x1011 0.035 TW Hya HDO (0.064) LkCa15 8x1012 (1x10-3) DM Tau DCN (< 2x10-3) LkCa15 o-H2D+ 4x1012 DM Tau 6x1013 TW Hya Deuterium Chemistry: Links to Comets D/H in comets HDO 3x10-4 (2x10-3) DCN 2x10-3 Comet: ice @ r= 5-30 AU cf. radio obs: gas beam size > 100 AU • D/H changes while fluid parcel migrates • towards the inner radius (Aikawa & Herbst 1999) • … mixing is not considered • D/H is determined by radial mixing (Hersant et al. 2001) • … only thermal reactions D/H model with mixing (radial & vertical) and full chemistry is highly desirable !

  28. future

More Related