1 / 43

Massive Stars: Feedback Effects in the Local Universe

Massive Stars: Feedback Effects in the Local Universe. Sally Oey University of Michigan Cathie Clarke IoA, Cambridge. Smith et al. / MCELS. HDF. Massive Star Feedback. Smith et al. / MCELS. Radiative Mechanical Chemical. > 8 M o 3 – 40 Myr lifetimes.

Download Presentation

Massive Stars: Feedback Effects in the Local Universe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Massive Stars:Feedback Effects in the Local Universe • Sally Oey • University of Michigan Cathie Clarke IoA, Cambridge Smith et al. / MCELS HDF

  2. Massive Star Feedback Smith et al. / MCELS • Radiative • Mechanical • Chemical > 8 Mo 3 – 40 Myr lifetimes

  3. THE MASSIVE STARPOPULATION Distributions: • N* : Clustering law, field • m :Stellar IMF NGC 346 Nota et al. 2006

  4. The IMF Upper-mass cutoff IC 1805 24 Berkeley 86 10 NGC 7380 11 NGC 1893 19 NGC 2244 12 Tr 14 / 16 82 LH 10 65 LH 117 / 118 40 Total 263 R136a / 30 Dor > 650 Grand Total > 913 Massey et al. 1995 Observed OB associationsages < 3 Myr,m > 10 Mo Massey & Hunter 1998, Hunter et al. 1997 Arches: Figer 2002, 2005 R136a: Weidner & Kroupa 2004, Oey & Clarke 2005

  5. mmaxexpectation value cf. Elmegreen (2000):Milky Way mup~10,000 Mo N* OB + 30 Dor OB’s impliesmup< 200 Mo Oey & Clarke (2005)

  6. Entire sample Probabilities for mmaxassuming mup P < 0.002 P < 0.12 P < 0.02 P < 0.47 Oey & Clarke 2005 mup ~ 150 M8 see also Koen (2006)

  7. A Universal Clustering Law HST / B. Whitmore Starbursts Meurer et al. 1995 Globulars and Massive young Clusters Elmegreen & Efremov 1997, Hunter et al. 2003 Antennae Zhang & Fall 1999 -1.95 +/- 0.03 -2.00 +/- 0.08

  8. a Universal Clustering Law and a Universal IMF ? Field stars fall on clustering law All -2.51 +/- 0.29 No field -2.27 +/- 0.38 SMC Oey, King, & Parker 2004 A steep field IMF a steepening N* (fewer massive) (more low-N*) Massey (1995, 2002); Kroupa & Weidner (2003)

  9. Fraction of Field Massive Stars: 35% to 7% for N*,up = 10 to 106 SMC: expect ~20%, see ~26% modest dependence on total SFR Oey, King, & Parker 2004

  10. RADIATIVE FEEDBACK Nebular emission • HII Region LF • Diffuse, warm ionized medium Large Magellanic Cloud MCELS Smith et al. 2006 Ha, [S II], [O III], V, R

  11. HII Region Luminosity Function log N(L) • Break in slope • Arm populations: shallower a Interarm populations: steeper a • Hubble Type correlation a ~ 1.7 Sc – Im a ~ 2.0 Sb – Sc a ~ 2.6 Sa log L a Universal Clustering Law and a Universal IMF ? Oey & Clarke 1998

  12. Ionization of the Diffuse WIM HaMilky Way WHAM: Reynolds et al. Field stars: ~ 50% WIM ionized by fieldOey et al. 2004; Hoopes & Walterbos 2000 Leaky nebulae: LMC: up to 50% ionizing photons escape Oey & Kennicutt 1997; Gerken, Walterbos, & Oey 2003

  13. MECHANICAL FEEDBACK Small Magellanic Cloud Staveley-Smith et al. 1997 H I DEM L152 R. C. Smith & MCELS Ha, [S II], [O III] ~100 pc diameter

  14. Superbubble size distribution Global Mechanical Feedback clustering law + + = Oey & Clarke 1997

  15. Oey & Clarke 1997 Size distribution Predicted -2.8 +/- 0.4 Observed -2.7 +/- 0.6 Oey & Clarke 1998 prediction observed Velocity distribution Predicted -3.5 Observed -2.9 +/- 1.4

  16. Ionizing photons escape into ISM? ...into IGM? Reionization of Universe? Escape of hot gas, stellar products and ionizing photons?

  17. Clarke & Oey 2003 Critical SF Threshold MW: Ambiguous porosity e.g., Oey & Clarke 1997 Starbursts: Lyman cont seen in Haro 11 Bergvall et al. 2006 LBGs: Lyman cont seen? Steidel et al. 2001 The first galaxies: ?

  18. SINGG: Survey of Ionization in Neutral Gas Galaxies Ha survey of HIPASS galaxies Meurer et al. (2006) ESO 300-G14 IC 5052 NGC 7713 Ha R-band Oey et al. (2006, in prep)

  19. High SF intensity : Less WIM

  20. Possible causes for high SFI : less WIM • Ionization source reduced: • Output from HII regions reduced • Fewer field OB stars • Starbursts occupy ISM and Remaining WIM density-bounded Ionizing photons escape

  21. Fraction of Field Massive Stars: recall 35% to 7% for N*,up = 10 to 106 SMC: expect ~20%, see ~26% modest dependence on total SFR Oey, King, & Parker 2004

  22. Diffuse fraction vs. total SFR

  23. recall Clarke & Oey 2003 Critical SF Threshold MW: Ambiguous porosity e.g., Oey & Clarke 1997 J0355-42 Starbursts: LBGs: Lyman cont seen e.g., Steidel et al. 2001

  24. Trend for HI-poor galaxies

  25. Possible causes for high SFI : less WIM • Ionization source reduced: • Output from HII regions reduced • Fewer field OB stars • Starbursts occupy ISM and Remaining WIM density-bounded ? Likely LyC seen from Haro 11 Bergvall et al. 2006 Ionizing photons escape

  26. Oey 2000, 2003 CHEMICAL FEEDBACK Q: filling factor n: generations Stochastic Inhomogeneous evolution

  27. Halo MDF Thick disk MDF Bensby & Oey (2006), in prep Thick disk MDF Thin disk MDF (Oey 2003) data:Carney et al. (1996) Simple: Halo is evolved SIM: Halo is unevolved data: Nordstrom et al. (2004) selection: Bensby et al. (2003, 2005)

  28. Zero-metallicity (Pop III) stars (Oey 2003) For Galactic halo modelFIII ~ 4e-2 vs.Observed FIII< 4e-4 Clear discrepancy!

  29. OB clustering H II LF, WIM Superbubbles Massive Star Feedback Field fraction: mup ~ 150 Mo ionizing WIM, IGM relation to IMF ISM structure, evolution

  30. A self-consistent analytic approach Superwind threshold Metal enrichment starburst feedback to IGM Simple Inhomogeneous Model GCE of unevolved systems

  31. Massive Star Feedback • OB population: clustering law, IMF • Radiative: HII LF, diffuse 104 K gas • Mechanical: superbubbles, superwinds diffuse 106 – 107 K gas • Chemical: inhomogeneous chemical evolution

  32. Adiabatic shell evolution L = mech luminosity n = ambient density t = age

  33. Galaxy Q M31 M33 LMC SMC IC 10 LG dwarfs Milky Way (HII LF) Milky Way (SN rate) 0.03 0.3 1.0 0.3 23 0.01 – 0.2 0.2 ~ 1 volume filling factor of hot ISM Porosity: Hot, ionized medium clusteringb = 2 Mac Low & McCray (1988) superwind mass-loss rate Oey & Clarke 1997, Oey et al. 2002

  34. (Clarke & Oey 2002) Starbursts Distributed vs Nuclear • He 2-10: Chandar et al. 2003 • Field population = SSC’s • LF L-2 • Field OB’s formed in situ Equal contrib to porosity by all superbubble R Oey & Clarke 1997

  35. R136a / 30 Dor Consistent with no mup Massey & Hunter 1998; Massey 2003 Suggestsmup~ 150 Mo Selman et al. 1999 Consistent with Salpeter slope If no mup: 1.7x N*(85 – 120 Mo) Expect (14, 19) having m > 120 Mo Found (2, 9) stars Massey & Hunter 1998 (See also Weidner & Kroupa 2004)

  36. Oey & Clarke 1998 zero-age evolved Monte Carlo model

  37. CHEMICAL FEEDBACK Nucleosynthesis Chemical evolution • MIXING : local • HOMOGENIZATION : global • IN/OUT-FLOW : open box

  38. Simple Inhomogeneous Model (Oey 2000, 2003) Q: filling factor = const n: generations Early times: Stochastic Inhomogeneous evolution

  39. Parent metallicity distribution function Multi-generation

  40. Inhomogeneous evolution: Dispersion Audouze & Silk (1995) Thin disk:Oey & Bensby -4.0 -3.0 -2.0 [Fe/H] Argast et al. (2000)

  41. Cayrel et al. (2005) McWilliam (1997)

  42. Evolution parameter: nQ n = 4 Q = 0.72 n = 24 Q = 0.72 n = 24 Q = 0.12 mtl-rich + old: high Q e.g.,Bulge mtl-poor + old: low Q e.g.,I Zw 18 m = nQ s2= nQ(1-Q)

More Related