1 / 1

MAO 3-61

MAO 3-61. K(x) = 20000 + 12x + 0,001x 2 & I(x) = 30x -0,002x 2. a) se graf. b) A(x) = K(x)/x =20000/x + 12 + 0,001x. Finner minimum ved å derivere og sette lik 0. A’(x) = -20000/x 2 + 0,001. A’(x) = 0 ==> -20000/x 2 + 0,001 = 0 ==> x 2 = 20.000.000 ==> x=4472.

Download Presentation

MAO 3-61

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MAO 3-61 K(x) = 20000 + 12x + 0,001x2 & I(x) = 30x -0,002x2 a) se graf b) A(x) = K(x)/x =20000/x + 12 + 0,001x Finner minimum ved å derivere og sette lik 0 A’(x) = -20000/x2 + 0,001 A’(x) = 0 ==> -20000/x2 + 0,001 = 0 ==> x2 = 20.000.000 ==> x=4472 min A(x) = A(4472) = 20000/4472 + 12 +0,001(4472) = 20,94 c) GK = K’(x) = 12 + 0,002x GK(4472) =12 + 0,002(4472) = 20, 94 GK(x) = A(x) der A(x) har sitt minimum d) O(x) = P(x) = I(x) -K(x) = 30x -0,002x2 -20000 - 12x - 0,001x2 ==> Når er O(x) > 0? O(x) = -0,003x2 +18x-20000 O(x) >0 <==> -0,003x2 18x-20000 > 0 ==> x1 = 4527,5 & x2 = 1472,5 ==> O(x) > 0 når 1472,5 < x < 4527,5 (best å bruke fortegnskjema)

More Related