250 likes | 398 Views
THE LYMAN- a FOREST AS A PROBE OF FUNDAMENTAL PHYSICS. MATTEO VIEL. Cosmological significance of the Lyman- a forest 2. LUQAS: The observational sample Hydro-dynamical simulations of the Lyman- a forest Cosmological parameters – Implications for: inflation,
E N D
THE LYMAN-a FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL • Cosmological significance of the Lyman-a forest • 2. LUQAS: The observational sample • Hydro-dynamical simulations of the Lyman-a forest • Cosmological parameters – Implications for: inflation, • neutrinos, gravitinos, warm dark matter particles With M. Haehnelt, J. Lesgourgues, S. Matarrese, A. Riotto, V. Springel, J. Weller Shanghai, 16 March 2005
GOAL: the primordial dark matter power spectrum CMB physics z = 1100 dynamics Continuum fitting Lya physics z < 6 dynamics + termodynamics Temperature, metals, noise Tegmark & Zaldarriaga 2002 CMB + Lyman a Long lever arm Relation: P FLUX (k) - P MATTER (k) ?? Constrain spectral index and shape
the WMAP era before WMAP Croft et al. 2002 Tilt in the spectrum n<1 ? Running spectral index dn/dlnk < 0 ? WMAP Verde et al. 2003
Wm = 0.26 WL = 0.74 Wb=0.0463 H = 72 km/sec/Mpc - 60 Mpc/h COSMOS computer – DAMTP (Cambridge) DM GAS STARS NEUTRAL HYDROGEN
The LUQAS sample -I Large sample Uves Qso Absorption Spectra (LP-UVES program P.I. J. Bergeron) high resolution 0.05 Angstrom, high S/N > 50 low redshift, <z>=2.25, Dz = 13.75 Nr. spectra redshift Kim, MV, Haehnelt, Carswell, Cristiani, 2004, MNRAS, 347, 355
The LUQAS sample –II systematic errors Effective optical depth Low resolution SDSS like spectra High resolution UVES like spectra <F> = exp (- t eff) Power spectrum of F/<F>
Hydro-simulations: scalings P FLUX (k) = b2(k) P MATTER (k) T = T0 ( 1 + d) g-1 Effective optical depth Viel, Haehnelt, Springel, MNRAS, 2004, 354, 684
Hydro-simulations: what have we learnt? Many uncertainties which contribute more or less equally (statistical error is not an issue!) ERRORS CONTRIBUTION TO FLUCT. AMPL.
Cosmological implications: combining the forest data with CMB - I MV, Haehnelt, Springel 2004 SDSS Seljak et al. 2004 n = 1.01 ± 0.02 ± 0.06 s8 = 0.93 ± 0.03 ± 0.09 Systematic error Statistical error Note that the flux bispectrum analysis agrees with these values MV, Matarrese, Heavens, Haehnelt, Kim, Springel, Hernquist, 2004
Cosmological implications: combining the forest data with CMB - II MV, Weller, Haehnelt, MNRAS, 2004, 355, L23 s8= 0.93 ± 0.07 n=0.99 ± 0.03 d ns/ d ln k SDSS Seljak et al. 2004 s8= 0.90 ± 0.03 n=0.98 ± 0.02 nrun = -0.003 ± 0.010 nrun=-0.033± 0.025
Cosmological implications: constraints on slow-roll inflation - III MV, Weller, Haehnelt, MNRAS, 2004, 355, L23 V = inflaton potential T/S = r < 0.45 (95% lim.) r = 0.50 ± 0.30 No evidence for gravity waves SDSS Seljak et al. 2004 T/S
Cosmological implications: Warm Dark Matter particles-I LCDM WDM 0.5 keV 30 comoving Mpc/h z=3 In general if light gravitinos k FS ~ 5 Tv/Tx (m x/1keV) Mpc-1 k FS ~ 1.5 (m x/100eV) h/Mpc Set by relativistic degrees of freedom at decoupling MV, Lesgourgues, Haehnelt, Matarrese, Riotto, PRD in press
Cosmological implications: Warm Dark Matter particles-II LWDM LCWDM (gravitino like) Wgravitino/ WDM Scale of free streaming Set limits on the scale of Supersymmetry breaking L susy< 260 TeV m WDM > 550 eV > 2keV sterile neutrino < 16 eV gravitino
Cosmological implications: constraints on neutrinos WMAP + 2dF + Lyman-a S mn (eV) = 0.33 ± 0.27
HPM simulations of the forest Full hydro 200^3 part. HPM PMGRID=600 HPM PMGRID=400 FLUX POWER
HIGH RESOLUTION HIGH S/N vs LOW RESOLUTION LOW S/N
SUMMARY • LUQAS: a unique high resolution view on the Universe at z=2.1 • 2. Hydro-dynamical simulations of the Lyman-a forest. Systematic • Errors? Differences between hydro codes? • Cosmological parameters: no fancy things going on • s8 = 0.93 n = 1 no running • substantial agreement between SDSS and LUQAS but SDSS has • smaller error bars not because of the larger sample but because of • the different theoretical modelling • Constraints on inflationary models, neutrinos and WDM
HPM simulations of the forest-I equation of motion for gas element if T = T0 ( 1 + d) g-1 Gnedin & Hui 1998
Feedback effects: Galactic winds No Feedback Feedback Density Temperature
Feedback effects: Galactic winds-III Line widths distribution Column density distribution function
Metal enrichment CIV systems at z=3 Strong Feedback e=1 ---- Role of the UV background Mori, Ferrara, Madau 2000; Rauch, Haehnelt, Steinmetz 1996; Schaye et al. 2003 Soft background ---- Role of different feedback e=0 e=1 e=0.1