1 / 13

Exponential Functions & Their Graphs

Exponential Functions & Their Graphs. 3.1. Algebraic vs. Transcendental. Algebraic Functions = polynomial and rational functions. Transcendental Functions = exponential and logarithmic functions. Definition of Exponential Function.

Download Presentation

Exponential Functions & Their Graphs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exponential Functions & Their Graphs 3.1

  2. Algebraic vs. Transcendental Algebraic Functions = polynomial and rational functions. Transcendental Functions = exponential and logarithmic functions.

  3. Definition of Exponential Function The exponential function f with base a is denoted by f(x) = ax where a > 0, a ≠ 1, and where x is any real number. Sometimes you will have irrational exponents.

  4. Example 1: Evaluating Exponential Functions Use a calculator to evaluate each function at the indicated value of x. • f(x) = 2x • f(x) = 2-x • f(x) = .6x

  5. Example 2: Graphs of y = ax In the same coordinate plane, sketch the graph of each function by hand. • f(x) = 2x • g(x) = 4x

  6. Example 3: Graphs of y = a-x In the same coordinate plane, sketch the graph of each function by hand. • f(x) = 2-x • g(x) = 4-x

  7. Properties of Exponents • ax∙ay = ax+y • ax / ay = ax-y • a-x = 1 / ax • a0 = 1 • (ab)x = ax ∙bx • (ax)y = axy • (a / b)x = ax / bx • |a2| = |a|2 = a2

  8. Transformations of Graphs of Exponential Functions Each of the following graphs is a transformation of the graph of f(x) = 3x. f(x) = 3x+1 one unit to the left f(x) = 3x-1 one unit to the right f(x) = 3x + 1 one unit up f(x) = 3x -1 one unit down f(x) = -3x reflect about x-axis f(x) = 3-x reflect about y-axis

  9. The Natural Base e e ≈ 2.718281828 ← natural base The function f(x) = ex is called the natural exponential function and the graph is similar to that of f(x) = ax. The base e is your constant and x is the variable. The number e can be approximated by the expression [1 + 1 / x] x.

  10. Example 4: Evaluating the Natural Exponential Function Use a calculator to evaluate the function f(x) = ex at each indicated value of x. • x = -2 • x = .25 • x = -.4

  11. Example 5: Graphing Natural Exponential Functions Sketch the graph of each natural exponential function. • f(x) = 2e.24x • g(x) = 1 / 2e-.58x

  12. Formulas for Compound Interest After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas: • For n compoundings per year: A = P (1 + r / n)nt • For continuous compoundings: a = Pert.

  13. Example 6: Finding the Balance for Compound Interest • A total of $12,000 is invested at an annual interest rate of 4% compounded annually. Find the balance in the account after 1 year. • A total of $12,000 is invested at an annual interest rate of 3%. Find the balance after 4 years if the interest is compounded quarterly.

More Related