1 / 32

The Effects of Aerosols on California Climate

The Effects of Aerosols on California Climate. Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University Collaborators on MODIS project: Yang Zhang (NCSU); Ned Snell (AER) MODIS Science Team Meeting March 23, 2005. Scientific Question.

Download Presentation

The Effects of Aerosols on California Climate

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Effects of Aerosols on California Climate Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University Collaborators on MODIS project: Yang Zhang (NCSU); Ned Snell (AER) MODIS Science Team Meeting March 23, 2005

  2. Scientific Question What are the effects in California and the South Coast Air Basin of all anthropogenic particles and their gas precursors on rainfall winds pollution content of rainwater cloudiness near-surface air temperatures vertical temperature profiles relative humidity ultraviolet/total solar/thermal-infrared radiation and how can MODIS data help evaluate these effects?

  3. Gas processes Emission Photchemistry Gas-to-particle conversion Cloud removal Aerosol processes Emission Nucleation/condensation Aerosol, cloud coagulation Dissolution/chem./crystallization Dry deposition/sedimentation Rainout/washout Cloud processes (3-D clouds) Described next page Radiative transfer UV/visible/near-IR/thermal-IR Scattering/absorption Gas Aerosol Hydrometeor Predicted snow, ice, water albedos Meteorological processes Velocity, geopotential, pressure Water vapor, temperature, density Turbulence Surface processes Temperatures and water content of Soil, Water, Snow, Sea ice, Vegetation, Roads, Roofs 2-D ocean dynamics 3-D ocean diffusion, chemistry Ocean-atmosphere exchange GATOR-GCMOM

  4. 3-D size-resolved clouds form from size-resolved aerosols without parameterization or equilibrium assumption. Time-dependent, grid-scale clouds form and move in 3-D. Activation and growth/evaporation of size-resolved liquid and ice on size-resolved aerosol particles Homogeneous/heterogeneous/contact/evaporative freezing Size-resolved liquid-liquid, liquid-ice, liquid-graupel, ice-ice, ice-graupel, graupel-graupel coagulation. Size-resolved liquid-aerosol, ice-aerosol, graupel-aerosol coagulation and liquid drop breakup Size-resolved precipitation (including aerosol inclusions). Subcloud size-resolved evaporation/melting Lightning calculated from size-resolved bounceoffs Gas dissolution/aqueous chemistry Treats first and second indirect effects explicitly GATOR-GCMOM

  5. Aerosol-Cloud Interactions

  6. Latitude (degrees) Model Grids Treated for California Case

  7. Latitude (degrees) Latitude (degrees) Feb/Aug BC Dif. w-w/o AAPPG

  8. Latitude (degrees) Latitude (degrees) Feb/Aug POM Dif. w-w/o AAPPG

  9. Latitude (degrees) Latitude (degrees) Feb/Aug SOM Dif. w-w/o AAPPG

  10. Latitude (degrees) Latitude (degrees) Feb/Aug S(VI) Dif. w-w/o AAPPG

  11. Latitude (degrees) Latitude (degrees) Feb/Aug NO3- Dif. w-w/o AAPPG

  12. Latitude (degrees) Latitude (degrees) Feb/Aug Aerosol LWC Dif. w-w/o AAPPG

  13. Latitude (degrees) Latitude (degrees) Feb/Aug Total Column Aerosol Mass Dif. w-w/o AAPPG

  14. Latitude (degrees) Latitude (degrees) Feb/Aug Near-Surface Aerosol Number Dif. w-w/o AAPPG

  15. Latitude (degrees) Latitude (degrees) Feb/Aug Aerosol 550 nm Optical Depth Dif. w-w/o AAPPG

  16. Latitude (degrees) Latitude (degrees) Feb/Aug Baseline Cloud Opt. Depth

  17. Latitude (degrees) Latitude (degrees) Feb/Aug Cloud Optical Depth Dif. w-w/o AAPPG

  18. Latitude (degrees) Latitude (degrees) Feb/Aug Near-Surface Cloud Fraction Dif. w-w/o AAPPG

  19. Latitude (degrees) Latitude (degrees) Feb/Aug Cloud LWC Dif. w-w/o AAPPG

  20. Latitude (degrees) Latitude (degrees) Feb/Aug Cloud Top Pressure Dif. w-w/o AAPPG

  21. Latitude (degrees) Latitude (degrees) Feb/Aug Down-Up Surface Solar Radiation Dif. w-w/o AAPPG

  22. Latitude (degrees) Latitude (degrees) Feb/Aug Down-Up Surface Thermal-IR Radiation Dif. w-w/o AAPPG

  23. Latitude (degrees) Latitude (degrees) Feb/Aug Near-surface Temperature Dif. w-w/o AAPPG

  24. Latitude (degrees) Modeled vs. Measured Feb. 1999 Precipitation

  25. Latitude (degrees) Latitude (degrees) Feb/Aug Precipitation Dif. w-w/o AAPPG

  26. Latitude (degrees) Latitude (degrees) Feb/Aug BC in Fog and Precip. Dif. w-w/o AAPPG

  27. Latitude (degrees) Latitude (degrees) Feb/Aug Near-Surface Wind Speed Dif. w-w/o AAPPG

  28. Latitude (degrees) Latitude (degrees) Feb/Aug Near-Surface Water-Vapor Dif. w-w/o AAPPG

  29. Solar (W/m2) Solar (W/m2) Paired-in-Time-and-Space Modeled (Red) v. Measured Solar Radiation

  30. Rel. humidity (%) Temperature (C) Paired-in-Time-and-Space Modeled (Red) v. Measured T and RH

  31. Wind direct. (deg.) Wind speed (m/s) Paired-in-Time-and-Space Modeled (Red) v. Measured Wind Speed & Direction

  32. Summary • Anthropogenic aerosols and gas precursors in California and the South Coast Air Basin were found to • decrease near-surface wind speeds • decrease rainfall in the Central Valley, South Coast, and mountains (e.g., Sierras, San Bernardino) • increase the pollution content of rainfall • increase cloud optical depth, fraction, LWC, top height • decrease near-surface air temperatures • stabilize the boundary layer • decrease UV, solar radiation at surface • increase thermal-IR radiation at surface

More Related