1 / 19

Progress Report

Progress Report. Compressive Sensing dan Estimasi Arah kedatangan Sinyal. Basis Pursuit dan CVX Programming. Kamis , 10 April 2014. Koredianto Usman NIM : 33213002. Algoritma Compressive Sensing. Asumsi :. X sinyal sparse. Y compressed sensing dari X. Y = A.X. Rekonstruksi :.

roxy
Download Presentation

Progress Report

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Progress Report Compressive Sensing danEstimasiArahkedatanganSinyal Basis Pursuit dan CVX Programming Kamis, 10 April 2014 KorediantoUsman NIM : 33213002

  2. Algoritma Compressive Sensing Asumsi : X sinyalsparse Y compressed sensing dari X Y = A.X Rekonstruksi: Mencari|x|1 minimum sehinggaA.X = Y

  3. Ilustrasi Kemudiandigeneralisirmenjadi n variabel Untukkemudahansketsa, diambilkondisi 2 dan 3 variabel Misalkan x = [0 5]T A = [0,8 0,6 ] Maka Y = A X = 0x0,8 + 5x0,6 = 3 Diberikan: Y = [3] Dan A = [0,8 0.6] Rekonstruksi: Tentukan |X|1 minimal sehingga AX = Y

  4. Ilustrasi | 2 Variabel Kemudiandigeneralisirmenjadi n variabel A = [0,6 0,8 ] Misalkan x = [0 5]T Maka Y = A X = 0x0,6 + 5x0,8 = 4 Rekonstruksi: Diberikan: Y = [4] Dan A = [0,6 0.8] Tentukan |X|1 minimal sehingga AX = Y Linear Programming : Misalkan X = [x1 x2]T Maka: AX = 0,6x1 + 0,8x2 = 3

  5. Ilustrasi | 2 Variabel Tanpaconstraint, makaterdapatbanyaksolusidari 0,6x1 + 0,8x2 = 4 Solusidaripersamaan linier

  6. Ilustrasi | 2 Variabel Dengan constraint Norm l1, makahanyaadasatusolusi: SOLUSI: X = [0 5] X semula = [0 5] 0,6x1 + 0,8x2 = 4 |x|1 = 5 |x|1 = 6 |x|1 = 2

  7. Ilustrasi | 2 Variabel Refleksi: Seandainyadigunakan norm l2: SOLUSI: X = [2.39 3.19] 0,6x1 + 0,8x2 = 4 X semula = [0 5] |x|2 = 3,98 |x|2 = 2

  8. Ilustrasi | 2 Variabel Refleksi: Seandainyadigunakan norm l2: Dengan Pseudo Inverse : 0,6x1 + 0,8x2 = 4 SOLUSI: X = [2.39 3.19] Diberikan: Y = [4] Dan A = [0,6 0.8] X semula = [0 5] A+ = [0.8 0.6]T Sehingga X = A+y = [2.4 3.2] Kesimpulan : Menyelesaikan LP denganminimisasi Norm L2samadenganteknik Pseudo Inverse |x|2 = 3,98 |x|2 = 2

  9. Ilustrasi | 2 Variabel Refleksi: Seandainyamatriks CS nyaterbalik A = [0,6 0,8 ] (semula) Misalkan x = [0 5]T A = [0,8 0,6 ] (menjadi) Maka Y = A X = 0x0,8 + 5x0,6 = 3 Diberikan: Y = [3] Dan A = [0,8 0.6] Rekonstruksi: Maka: AX = 0,8x1 + 0,6x2 = 3

  10. Ilustrasi | 3 Variabel A = [ 0.3 0,6 0,4 0.1 0.8 0.3] Misalkanx = [0 5 1]T Y = A.X = [3.4 4.3]T Y = A.X = [3.4 4.3]T Rekonstruksi : A = [ 0.3 0,6 0,4 0.1 0.8 0.3] Cari X : dengan norm l1 minimal sehingga : AX = y

  11. Ilustrasi | 3 Variabel A = [ 0.3 0,6 0,4 0.1 0.9 0.3] Y = A.X = [3.4 4.3]T Jika X = [X1 X2 X3] Maka AX=y menghasilkan 2 persamaan: 0.3X1 + 0.6X2 + 0.4 X3 = 3.4 …. (f1) 0.1X1 + 0.8X2 + 0.3 X3 = 4.3 …. (f2) Dengankonstrain : |X1| + |X2| + |X3|minimal

  12. Ilustrasi | 3 Variabel Lagrange Multiplier: Menjadi: 0.3X1 + 0.6X2 + 0.4 X3 – 3.4 = 0 (0.3X1 + 0.6X2 + 0.4 X3 – 3.4) + (0.1X1 + 0.8X2 + 0.3 X3 – 4.3)= 0 0.1X1 + 0.8X2 + 0.3 X3 – 4.3 = 0 Dengankonstrain : |X1| + |X2| + |X3|minimal C 14.3 Q C 8.5 B Q P A 5.3 B 5.6 P A 11.3 43

  13. Ilustrasi | 3 Variabel Interior Point Algorithm (0.3X1 + 0.6X2 + 0.4 X3 – 3.4) + (0.1X1 + 0.8X2 + 0.3 X3 – 4.3)= 0 Dengankonstrain : |X1| + |X2| + |X3|minimal Z2 C Q C Q P Z”1 B B A Z’1 P Z1 A ContohAlgoritma: Primal-Dual APBQCA : BidangConvex Z1 : Interior point Z2 : Exterior point

  14. Convex Optimization CVX - Matlab CVX adalahekstensi MEX padaMatlabuntukmenyelesaikanMasalah Convex Optimization Dikembangkanoleh Stephen Boyd (Stanford Univ.)

  15. CVX - Matlab INSTALASI:

  16. CVX – Matlab – RECOVERY REAL %Contoh CS danrecoverynyadengan CVX %Optimization n = 512; %Panjangsampelasal k = 15; %sparsity m = 5 * k; %jumlahsampel yang dikumpulkan %Bangkitkansinyal x x = genSparse(n,k); %Bangkitkanmatrikspengukuran A = genA(n,m); %Hitungsinyalhasilpengukuran y y = A*x; %Rekonstruksidengan CVX cvx_begin variable xbaru(n); minimize (norm(xbaru ,1)) subject to A* xbaru == y; cvx_end function x = genSparse(n,k) temp = randperm(n); x = zeros(n,1); x(temp(1:k))=randn(k,1); function A = genA(n,m) A = randn(m,n)/sqrt(m); randn(k,1); Blok CVX

  17. CVX - Matlab Blok CVX

  18. CVX – Matlab – RECOVERY REAL %Contoh CS danrecoverynyadengan CVX %Optimization n = 512; %Panjangsampelasal k = 15; %sparsity m = 5 * k; %jumlahsampel yang dikumpulkan %Bangkitkansinyal x x = genSparse(n,k); %Bangkitkanmatrikspengukuran A = genA(n,m); %Hitungsinyalhasilpengukuran y y = A*x; %Rekonstruksidengan CVX cvx_begin variable xbaru(n) complex; minimize (norm(xbaru ,1)) subject to A* xbaru == y; cvx_end function x = genSparse(n,k) temp = randperm(n); x = zeros(n,1); x(temp(1:k))=randn(k,1) + j*randn(k,1); function A = genA(n,m) A = randn(m,n)/sqrt(m); randn(k,1); Blok CVX

  19. CVX – Matlab – RECOVERY COMPLEX

More Related