1 / 15

23. Rangkaian dengan Resistor dan Kapasitor

23. Rangkaian dengan Resistor dan Kapasitor. 23. 1 Pengisian kapasitor Kapasitor pada Gambar 23.1 pada awalnya tidak bermuatan. Untuk melakukan pengisian, switch S dihubungkan ke titik a. a. S. b. R. C. +. -. E. Gambar 23.1 Rangkaian untuk Pengisian Kapasitor.

rozene
Download Presentation

23. Rangkaian dengan Resistor dan Kapasitor

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 23. Rangkaian dengan Resistor dan Kapasitor

  2. 23. 1 Pengisian kapasitor Kapasitor pada Gambar 23.1 pada awalnya tidak bermuatan. Untuk melakukan pengisian, switch S dihubungkan ke titik a. a S b R C + - E Gambar 23.1 Rangkaian untuk Pengisian Kapasitor Selanjutnya akan dicari variasi arus terhadap saat pada saat dilakukan pengisian kapasitor.

  3. Dengan menerapkan Hukum Kirchhoff 2 pada Gambar 23.1 didapat atau E (23.1) E E adalah emf baterai iR adalah beda potensial pada resistor q/C adalah beda potensial antara dua plat kapasitor. Karena i = dq/dt, maka persamaan (23.1) dapat ditulis menjadi, (23.2) E

  4. Selanjutnya persamaan (23.2) ditulis dalam bentuk (23.3) E Misal u = E – q/C  du = –1/C dq  dq = – C du Substitusi dq dan E – q/C ke pers. (23.3) didapat  (23.4) ln (E – (23.5) E

  5. Ingat! Pada saat awal kapasitor tidak bermuatan. Artinya q = 0 pada saat t = 0, sehingga E = ek Substitusi ek = E ke persamaan (23.5) didapat (23.6) E E E E (23.7)

  6. Beda potensial yang melintasi kapasitor adalah (23.8) Beda potensial yang melintasi resistor adalah E (23.9) VR = i R =E e–t/RC 23. 2 Konstanta Waktu Besaran RC pada persamaan 23.6 dan 23.7 mempunyai dimensi waktu dan disebut sebagai konstanta waktu kapasitif, dilambangkan dengan . Jika t = RC maka = 0,63 CE E Artinya muatan kapasitor meningkat sebesar CE (1 – e–1) atau sekitar 0,63 CE

  7. 23. 3 Mengosongkan Muatan Kapasitor Jika kapasitor pada Gambar berikut kapasitor sudah bermuatan penuh, berarti beda potensialnya sama dengan baterai. a S b R C + - E Gambar 23.1 Rangkaian untuk Pengisian Kapasitor

  8. Pada saat t = 0, switch S dialihkan ke titik b dan muatan kapasitor dilepas ke resistor. Pada situasi ini baterai tidak terhubung ke rangkaian. Artinya E pada persamaan (23.2) sama dengan nol, sehingga (23.10) 

  9. Ingat! Pada saat awal, muatan kapasitor = CE . Artinya q = q0= CE pada saat t = 0, sehingga (23.11) E Pada saat t = RC, maka muatan kapasitor menurun sebesar CE e–1 atau menurun sebesar 37% dari muatan awal Arus pada kapasitor selama proses pengosongan didapat dengan jalan melakukan differensial persamaan (23.11). (23.12)

  10. 23. 4 Energi yang Disimpan Didalam Kapasitor Energi yang disimpan di dlamkapasitor dalam bentuk energi dalam adalah (23.13) atau (23.14)

  11. Contoh 23.1 Sebuah kapasitor dengan kapasitansi C dikosongkan (discharging) melalui sebuah resistor dengan tahanan R. (a)Waktu yang dibutuhkan untuk mengurangi muatan kapasitor menjadi setengah muatan awal. (b) Waktu yang dibutuhkan hingga energi yang tersimpan di dalam kapasitor menjadi setengahnya Penyelesaian (a) q = 1/2q0 Dari pers. (23.11) q = q0 e–t/RC. Sehingga 1/2 q0 = q0 e–t/RC 1/2 = e–t/RC t = 0,69 RC = 0,69 

  12. (b) U = 1/2 U0 Dari persamaan (23.13) Sehingga

  13. Contoh 23.2 Sebuah kapasitor dengan kapasitansi C dikosongkan (discharging) melalui sebuah resistor dengan tahanan R. (a)Waktu yang dibutuhkan untuk mengurangi muatan kapasitor menjadi setengah muatan awal. (b) Waktu yang dibutuhkan hingga energi yang tersimpan di dalam kapasitor menjadi setengahnya Penyelesaian (a) q = 1/2q0 Dari pers. (23.11) q = q0 e–t/RC. Sehingga 1/2 q0 = q0 e–t/RC 1/2 = e–t/RC

  14. Latihan 1. Tentukan konstanta waktu  untuk masing-masing rangkaian (a), (b), dan (c) (a) (c) (b)

  15. 2. Pada rangkaian seri RC diketahui E = 12,0 V, R = 1,40 M, dan C = 1,80 F. Tentukan (a) konstanta waktu kapasitif (b) muatan maksimum selama proses pengisian (c ) waktu yang dibutuhkan agar muatan kapasitor mencapai 16,0 C

More Related