1 / 109

1 Outreach to mu = 300-600 MeV in Hi-mu-Rhic 2 v1, v2- Flow change sign at critical point:

v1,v2-Flow probe Order of Phase Transition Horst Stöcker, FIAS Frankfurt Institute for Advanced Studies. 1 Outreach to mu = 300-600 MeV in Hi-mu-Rhic 2 v1, v2- Flow change sign at critical point: 1. & 2. Order Phase Transition (T,mu)- critical

rtorres
Download Presentation

1 Outreach to mu = 300-600 MeV in Hi-mu-Rhic 2 v1, v2- Flow change sign at critical point:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. v1,v2-Flow probe Order of Phase Transition Horst Stöcker, FIAS Frankfurt Institute for Advanced Studies 1 Outreach to mu = 300-600 MeV in Hi-mu-Rhic 2 v1, v2- Flow change sign at critical point: 1. & 2. Order Phase Transition (T,mu)-critical 3 v1 Bounce-Off Excitation fct. Collapse @ 4 v2 Squeeze-Out Excitation fct. “ 2+2 to 8+8 AGeV 5 Machshock- angles measure speed of sound: the case for asymmetric collisions Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  2. RHIC-Time evolution in T-Mu_B Plane UrQMDBravina- looks thermal after 5 fm/c! Time-Evolution UrQMD L.Bravina 2Ecm=18Ecrit 4+4 2+2 mucrit 1. Order phase transition ? FK BiS RHIC Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  3. Ideal Hadron Gas: mu-crit@S/A=13-18! G. Zeeb BiS Fo-K BiS Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  4. Chiral SU(3) hadron model mu-crit@S/A=7-10! BiS D. Zschiesche, G. Zeeb Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  5. Isentropes of PNJL-model, C.Ratti Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  6. Chiral SU(3) Hadron model: Elab=10-40 AGeV D. Zschiesche, G. Zeeb Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  7. Baryon Flow as Barometer:BounceOff=v1= px/ptSqueezeOutv2=(px**2-py**2)/pt**2Pressure -> baryon‘sv1,v2 Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  8. Multi-Fluid-Hydrodynamics Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  9. 11GeV 3Dim-3Fluid B. Baeuchle, M.Bleicher, HST Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  10. 30GeV 3D3F Baeuchle, Bleicher, HST Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  11. 6 AGeV: Flow of Baryons linear: No Phase Transition -but also no single thermalized source! Strange Baryons flow ! But Pions & Strange Mesons K show Anti-flow! E895 Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  12. Hydro: if NO P.T.proton v1=px/ptrise linearlyBrachmann, Paech, Dumitru Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  13. Influence of secondary minimum in Ec(r) on the propagation of shock wavesStöcker, Hofmann, Scheid, Greiner 1974/75 Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  14. Collapse of Shock at Phase Transition in EoS D. Rischke NPA 610, c88 (‘96) Later dubbed “softest point” of EoS Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  15. hydro mu > mu-crit: 1.order transitionNegative v1-flow =Anti-Flow of protons at - > 11 AGeV It is in the protons. Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  16. Proton No data! Hydro [Csernai, HIPAGS’93] Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  17. Au+Au, 8GeV, b=3fm, Triple differential Cross section Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  18. ELab> 40 GeV/nucl - Recover Positive v1-Flow! Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  19. v1-proton 3DHydro: PROTON-AntiFlow AGS, FAIR, RHIC Extrapolated Data: Anti-Flow @ 30 AGeV: Hi-Mu-RHIC! Paech, Dumitru SIS AGS-data v1-sign change TWICE proves 1. Order & 2. Order at mu-crit Hi-mu RHIC data Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  20. Soff: UrQMD Predicts Proton v1 Rises Linearly with y & E - What do Data Say? Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  21. Proton “Anti-Flow” observed in Pb+Pb@ 40AGeV by NA49: Preliminary A. Wetzler v1 0 “Anti-Flow” discovered! -> 1. Order Phase Transition! Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  22. Baryon Flow as Barometer:BounceOff=v1= px/ptSqueezeOutv2=(px**2-py**2)/pt**2Pressure -> baryon‘sv1,v2 Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  23. v2(Elab): Elliptic flow excitation function UrQMD: Smooth Increase of v2 > 0 above 6 AGeV For both p and pi SPS AGS SIS Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  24. V2:40AGeV UrQMD PIONS Protons S. Soff Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  25. Results: Chiral Field  Paech, Dumitru, HST 1st order phase transition Critical Point Large Amplitude Field Fluctuations ! 1. O. PT NO 1.O. PT Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  26. Huge Fluctuations in Energy-(Baryon-) Density De e De e ~ 1 << 1 Paech, Dumitru, HST Critical Point 1st order phase transition Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  27. Fluctuations and flow: V2 Paech, Dumitru, HST AGS SPS RHIC v2 Hi-mu RHIC! De/e Inhomogeneities! E877 NA49 STAR Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  28. NA49: Collapse of V2(protons) at 40 AGeV 40 158 Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  29. Excitation Function: Elliptic flow NA49 PRC C68 034903 (2003) Collapse of proton flow at 40AGeV? provides universal scaling

  30. Flow - Excitation function over • 6 orders of magnitude • Three sign changes of v2 • Collapse of Flow • at 40 AGeV • onset of deconfinement • First order phase transition! Excitation Function of Elliptic Flow UrQMD RHIC SPS AGS Data UrQMD Min.bias Central GSI LBL Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  31. Thank You!!! Bjoern Baeuchle Barbara BetzITP Goethe Universität Frankfurt Marcus Bleicher Adrian Dumitru Kerstin Paech (now@NSCL,MSU) Hannah Petersen Dirk Rischke Stefan Schramm Gebhardt Zeeb Detlef Zschiesche (now@RIO de Janeiro) Elena Bratkovskaya FIAS- Junior Fellow Xianglei Zhu FIGSS- Student from Tsinghua U. Claudia Ratti ECT* Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  32. Flow - THE BAROMETER for the EoS from SIS via MuRHIC & FAIR to LHCHorst Stöcker, FIAS Frankfurt Institute for Advanced Studies 1 Outreach to mu = 300-600 MeV in Hi-mu-Rhic 2 v1 Bounce-Off Excitation function 4-12 collapse 3 v2 Squeeze-Out Excitation function 4-12 GeV 4 Dependence of v1, v2 Flow on the EoS - 1. & 2. Order Phase Transition (T,mu)-critical Hi-mu-RHIC from 2+2 to 8+8 AGeV 5 Machshock- angle measure speed of sound: the case for asymmetric collisions Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  33. Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  34. Hi-mu Mach shock cones compress nuclei-the case for asymmetric collisions Baumgardt, Schott, Sakamoto, Schopper, Stöcker, Hofmann, Scheid, Greiner, Z. Phys. A273 (1975) 359 Oxygen cause Mach cone in Nuclei Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  35. Nuclear Mach Shock Waves collapse in 1.O. PT: Stöcker, Hofmann, Scheid, W.Greiner 1974/76 Bear Mountain 1974 2-4 AGeV/c Carbon on Silver Nuclear EoS Lee-Wick (m=0) state Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  36. Jets interact with the plasma exciting Machshock waves and plasma-wakes Mach shock -emission angle θrelative to jet axis: cos θ= cs/ vjet cs=0.3-0.4 in hadron matter cs= 0.57 for (m = 0) thermal QG plasma Stöcker 2004 Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  37. Deformations of quark&gluon- Machcones by FLOW due to high Pressure PQCDof QGP Collective flow of Plasma: Deformation of Mach cone Deflectionof it’s axis in the flow direction Away-side satellites skewed and broadened Satarov, Stöcker,Mishustin, Phys. Lett. B627 (2005) 64 Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  38. Mach shock cones in expanding QGP-flow: geometry dependence Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  39. Collective flow as “transverse storm” Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  40. Mach shock cones are shifted in expanding QGP-firestorm shifts should be directly broadening of the away-side maxima visible in 3-particle correlations Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  41. Split: Mach-angles depend on collective flow velocities u! Longitudinal expansion: Transverse Storm: „Wrong“ side Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  42. 50 GeV Jet in ALICE@LHC „b“= 3fm 1st O. QGP Paech Dumitru Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  43. Away–side jet suppression: centrality dependence (200 AGeV Au+Au) Phenix The minimum at PHENIX preliminary is not observed for Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  44. conical flow? 3-particle correlation pTtrig=3-4, pTassoc=1-2 GeV/c 2-particle corr, bg, v2 subtracted near near d+Au min-bias Df2 p Dφ2=φ2-φtrig Medium Medium away away 0 0 p mach cone Df1 Au+Au 10% Df2 Dφ2=φ2-φtrig p dN2/dΔφ1dΔφ2/Ntrig 0 deflected jets 0 p Df1 Dφ1=φ1-φtrig Three regions on away side: center = (p, p) ±0.4 corner = (p+1,p+1) ±0.4 x2 cone = (p+1,p-1) ±0.4 x2 difference in Au+Au average signal per radian2: center – corner = 0.3 ± 0.3 (stat) ± 0.4 (syst) center – cone = 2.6 ± 0.3 (stat) ± 0.8 (syst) d+Au and Au+Au elongated along diagonal: kT effect, and deflected jets? Distinctive features of conical flow are not seen in present data with these pT windows. Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main See talk, J. Ulery (section 3c)

  45. Signal Strengths d+Au Δ2 Au+Au Central 0-12% Triggered Δ1 Δ1 Δ2 • Evaluate signals by calculating average signals in the boxes. • Near Side, Away Side, Cone, and Deflected. Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  46. Thank You!!! Barbara BetzITP Goethe Universität Frankfurt Marcus Bleicher Adrian Dumitru Kerstin Paech (now@NSCL,MSU) Hannah Petersen Dirk Rischke Stefan Schramm Gebhardt Zeeb Detlef Zschiesche (now@RIO de Janeiro) Elena Bratkovskaya FIAS- Junior Fellow Xianglei Zhu FIGSS- Student from Tsinghua U. Claudia Ratti ECT* Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  47. Flow - THE BAROMETER for the EoS from SIS via MuRHIC & FAIR to LHCHorst Stöcker, FIAS Frankfurt Institute for Advanced Studies 1 Outreach to mu = 300-600 MeV in Hi-mu-Rhic 2 v1 Bounce-Off Excitation function 4-12 collapse 3 v2 Squeeze-Out Excitation function 4-12 GeV 4 Dependence of v1, v2 Flow on the EoS - 1. & 2. Order Phase Transition (T,mu)-critical Hi-mu-RHIC from 2+2 to 8+8 AGeV 5 Machshock- angle measure speed of sound: the case for asymmetric collisions Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  48. Jets interact in both, Plasma- and Hadron Phase! • Hadronic rescattering - responsible for how much energy loss? Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  49. expansion of small color transparency configuration:+ 50% hadronic quenching !+ 50% QGP needed Cassing, Gallmeister, CarstenGreiner: + 50% of pT -suppression due to hadron rescattering Rho + Proton suppression Plasma suppression Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

  50. Di-hadron correlations:how much suppression is due to hadronic FSI - final state interactions? T. Trainor Two-point velocity correlations among 1-2 GeV/c hadrons away-side jet jet   Parton correlations from Di-Jets translate into Di-hadron Correlations - Data suggest that parton correlations exist even in the "thermal“ regime, created as the result of energy loss of more energetic partons. Horst Stöcker, FIAS & ITP, J.W. Goethe- Universität Frankfurt am Main

More Related