1 / 53

Fast Inverse Reflector Design FIRD

Fast Inverse Reflector Design FIRD. Albert Mas Ignacio Martín Gustavo Patow. Graphics Group of Girona Institut d’Informàtica i Aplicacions Universitat de Girona Spain. CEIG08, Barcelona. Introduction. Lighting design. GGG – IIiA - UdG. Introduction. Light source

ruby
Download Presentation

Fast Inverse Reflector Design FIRD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fast Inverse Reflector DesignFIRD Albert Mas Ignacio MartínGustavo Patow Graphics Group of Girona Institut d’Informàtica i Aplicacions Universitat de Girona Spain CEIG08, Barcelona

  2. Introduction • Lighting design GGG – IIiA - UdG

  3. Introduction Light source Uniform light distribution Reflector Defines the lighting distribution Specular material Holder Holder Reflector Light source GGG – IIiA - UdG

  4. ? Introduction Lighting industry problem: Reflector Design The desired lighting is known, but not the reflector Inverse design Iterative try and test process High manufacturing costs GGG – IIiA - UdG

  5. Introduction Inverse reflector design methods Very restricted reflector shapes Demand high computational costs Hours or days to compute a solution Not able to generate complex real world reflectors GGG – IIiA - UdG

  6. Introduction Goals : Computation of the best approximation, from a family of possible reflectors, to a given desired illumination distribution. Fast GPU algorithm to calculate the reflected rays on the reflector. Reflector parametrizable basis Parameters optimization Use millions of light rays Use highly complex reflector shapes GGG – IIiA - UdG

  7. FIRD Introduction State of the art Reflector lighting Optimization Results Conclusions and future work GGG – IIiA - UdG

  8. State of the art Inverse reflector design (I) IGP problem(Survey Patow and Pueyo ’05) Numerical solutions Local Illumination [Caffarelli et al. ‘99] Paraboloid intersection One bounce NURBS-based Inverse Reflector Design [Anson et al. ’08] Global Illumination [Patow et al. ‘07] GGG – IIiA - UdG

  9. State of the art Inverse reflector design (II) Global illumination [Patow et al. ‘07] Polygonal meshes More than one bounce inside reflector are considered Global optimization method Disadvantages High computational cost Reflector mesh resolution Number of traced rays GGG – IIiA - UdG

  10. State of the art GPU Ray Tracing (I) Global illumination method needs a large set of light source rays High computational cost Acceleration : GPU GPU has limitations GPU fits well in our problem GGG – IIiA - UdG

  11. State of the art GPU Ray Tracing (III) Ray Engine [Carr et al. ‘02] Environment Mapping [Umenhoffer et al. ‘07] GGG – IIiA - UdG

  12. State of the art Y X Z GPU Ray Tracing (II) Reflector made by pressing procedure Height-map Relief Texture Mapping [Oliveira et al. ’00] Simplified Ray-Tracing model GGG – IIiA - UdG

  13. State of the art GPU Ray Tracing (IV) Space partitioning methods: Hierarchical subdivision structures Octree Traversal (CPU) [Revelles et al. ‘00] Displacement Mapping [Szirmay-Kalos and Umenhoffer ‘08] Quadtree Relief Mapping [Schroders and Gulik ‘06] Quadtree represented into the GPU as a mip-map texture

  14. FIRD Introduction State of the art Reflector lighting Optimization Results Conclusions and future work GGG – IIiA - UdG

  15. Reflector Lighting Overview Preprocessing of the input data Reflector geometry transformation Reflections computation Comparison to desired distribution GGG – IIiA - UdG

  16. Reflector Lighting Input data Far-field IES Reflector holder Light source Light distribution Position Shape GGG – IIiA - UdG

  17. Reflector Lighting Reflector geometry transformation Hierarchical height field representation of the reflector Quadtree Mip-map texture Store normal vectors into a texture GGG – IIiA - UdG

  18. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping [Schroders and Gulik ‘06] Intersection search going down the hierarchy GGG – IIiA - UdG

  19. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy GGG – IIiA - UdG

  20. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy GGG – IIiA - UdG

  21. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy GGG – IIiA - UdG

  22. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy GGG – IIiA - UdG

  23. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy GGG – IIiA - UdG

  24. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy GGG – IIiA - UdG

  25. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy GGG – IIiA - UdG

  26. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy GGG – IIiA - UdG

  27. Reflector Lighting Reflections computation (I) Quadtree Relief Mapping Intersection search going down the hierarchy

  28. Reflector Lighting Reflections computation (II) Quadtree Relief Mapping drawback: recursive reflections Intersection search going up the hierarchy GGG – IIiA - UdG

  29. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  30. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  31. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  32. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  33. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  34. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  35. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  36. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  37. Reflector Lighting Reflections computation (II) Intersection search going up the hierarchy GGG – IIiA - UdG

  38. Reflector Lighting Comparision to desired distribution (I) Comparison of far-fields Light distribution classification: Histogram on GPU GGG – IIiA - UdG

  39. Reflector Lighting Comparision to desired distribution (II) Histogram comparision on GPU Distance metric: l2 GPU Reduction algorithm GGG – IIiA - UdG

  40. FIRD Introduction State of the art Reflector lighting Optimization Results Conclusions and future work GGG – IIiA - UdG

  41. Optimization Optimization Based on [Patow et al. ‘05] Optimize the parameters used in the parametric reflector shape definition Standard optimization method Brute Force Linear steps Test all possible reflectors Regenerate the height field texture for each reflector Iterative process Stops when difference value is under a given threshold Test all possibilities and take the best one (less difference) GGG – IIiA - UdG

  42. FIRD Introduction State of the art Reflector lighting Optimization Results Conclusions and future work GGG – IIiA - UdG

  43. Results 30 -30 0 -20 Model A (I) 107 rays GGG – IIiA - UdG

  44. Results Model A (II) GGG – IIiA - UdG

  45. Results -10 0 0 -7 Model B (I) 5x106 rays GGG – IIiA - UdG

  46. Results Model B (II) GGG – IIiA - UdG

  47. Results 0 10 0 -6 Model C (I) 107 rays GGG – IIiA - UdG

  48. Results Model C (II) GGG – IIiA - UdG

  49. Results Results NVidia GeForce 8800 GTX (milliseconds) Mip-map texture size: 1200x800 -> 9 levels GGG – IIiA - UdG

  50. FIRD Introduction State of the art Reflector lighting Optimization Results Conclusions and future work GGG – IIiA - UdG

More Related