900 likes | 1.65k Views
IMAGING OF HEAD TRAUMA. Dr. Thanh Binh Nguyen University of Ottawa, Canada July 2009. OUTLINE. Clinical indications for imaging Imaging technique Extraaxial hemorrhage Intraaxial injury Brain herniations Skull fractures. INTRODUCTION.
E N D
IMAGING OF HEAD TRAUMA Dr. Thanh Binh Nguyen University of Ottawa, Canada July 2009
OUTLINE • Clinical indications for imaging • Imaging technique • Extraaxial hemorrhage • Intraaxial injury • Brain herniations • Skull fractures
INTRODUCTION • Head trauma is the leading cause of death in people under the age of 30. • Males have 2-3 x frequency of brain injury than females • Due mainly to motor vehicle accidents and assaults
Classification of TBI • Primary • Injury to scalp, skull fracture • Surface contusion/laceration • Intracranial hematoma • Diffuse axonal injury, diffuse vascular injury • Secondary • Hypoxia-ischemia, swelling/edema, raised intracranial pressure • Meningitis/abscess
IMAGING TECHNIQUE • The presence of a skull fracture increases the risk of having a posttraumatic intracranial lesion. • However, the absence of a skull fracture does not exclude a brain injury, which is particularly true in pediatric patients due to the capacity of the skull to bend. • NO ROLE FOR PLAIN FILMS IN ACUTE HEAD TRAUMA
IMAGING TECHNIQUE • CT without contrast is the modality of choice in acute trauma (fast, available, sensitive to acute subarachnoid hemorrhage and skull fractures) • MRI is useful in non-acute head trauma (higher sensitivity than CT for cortical contusions, diffuse axonal injury, posterior fossa abnormalities)
OUR CT PROTOCOLS • “ROUTINE”: posterior fossa and supratentorial region (slice thickness = 5mm) • “TRAUMA”: posterior fossa (2.5mm), supratentorial region (5mm) • “TEMPORAL BONE”: <1mm in axial or coronal plane • “ORBITS/FACIAL BONES”: 1.25 mm axial/coronal orbits
APPROACH TO CT BRAIN • Look at the scout film: ? Fracture of upper cervical spine or skull • Look for brain asymmetry • Look at sulci, Sylvian fissure and cisterns to exclude subarachnoid hemorrhage • Change windows to look for subdural collection • Look at bone windows to see fractures • Determine if mass is intraaxial (in the brain) or extraaxial (outside)
SCALP INJURY • Cephalohematoma: blood between the bone and periosteum. Cannot cross the suture lines. • Subgaleal hematoma: blood between the periosteum and aponeurosis. Can cross the suture lines. • Caput Succ: swelling across the midline with scalp moulding. Resolves spontaneously.
Extraaxial fluid collections • Subarachnoid hemorrhage(SAH) • Subdural hematoma(SDH) • Epidural hematoma • Subdural hygroma • Intraventricular hemorrhage
Subarachnoid hemorrage • Can originate from direct vessel injury, contused cortex or intraventricular hemorrhage. • Look in the interpeduncular cistern and Sylvian fissure • Usually focal (but diffuse from aneurysm) • Can lead to communicating hydrocephalus
SUBDURAL HEMATOMA • Occurs between the dura and arachnoid • Can cross the sutures but not the dural reflections • Due to disruption of the bridging cortical veins • Hypodense(hyperacute, chronic), isodense(subacute), hyperdense(acute)
MANAGEMENT OF aSDH • Acute SDH with thickness > 10 mm or midline shift > 5mm should be evacuated • Patient in coma with a decrease in GCS by >2 points with a SDH should undergo surgical evacuation.
EPIDURAL HEMATOMA • Located between the skull and periosteum • Due to laceration of the middle meningeal artery or dural veins • Can cross dural reflections but is limited by suture lines • Lentiform shape (but concave shape in SDH)
MANAGEMENT OF aEDH • EDH > 30 cm3 should be evacuated. • EDH < 30 cm3 and <15 mm thickness and < 5 mm midline shift and GCS >8 may be managed nonoperatively with serial CT
Intraventricular hemorrhage • Most commonly due to rupture of subependymal vessels • Can occur from reflux of SAH or contiguous extension of an intracerebral hemorrhage • Look for blood-cerebrospinal fluid level in occipital horns
INTRA-AXIAL INJURY • Surface contusion/laceration • Intraparenchymal hematoma • White matter shearing injury/diffuse axonal injury • Post-traumatic infarction • Brainstem injury
CONTUSION/LACERATIONS • Most common source of traumatic SAH • Contusion: must involve the superficial gray matter • Laceration: contusion + tear of pia-arachnoid • Affects the crests of gyri • Hemorrhage present ½ cases and occur at right angles to the cortical surface • Located near the irregular bony contours: poles of frontal lobes, temporal lobes, inferior cerebellar hemispheres
From http://neuropathology.neoucom.edu/ Dr.Agamanolis
Intraparenchymal hematoma • Focal collections of blood that most commonly arise from shear-strain injury to intraparenchymal vessels. • Usually located in the frontotemporal white matter or basal ganglia • Hematoma within normal brain • DDx: DAI, hemorrhagic contusion
DIFFUSE AXONAL INJURY • Rarely detected on CT ( 20% of DAI lesions are hemorrhagic) • MRI: T1, T2, T2 GRE, SWI
DAI • Due to acceleration/deceleration to whtie matter + hypoxia • Patients have severe LOC at impact • Grade 1: axonal damage in WM only -67% • Grade 2: WM + corpus callosum (posterior > anterior) – 21% • Grade 3: WM + CC + brainstem
DAI • Hours: • hemorrhages and tissue tears • Axonal swellings • Axonal bulbs • Days/weeks: clusters of microglia and macrophages, astrocytosis • Months/years: Wallerian degeneration
From http://neuropathology.neoucom.edu/ Dr.Agamanolis