320 likes | 544 Views
Stato progetto RPC A. Colaleo –INFN BARI. Sommario. Stato produzione Stato installazione e commissioning RPC nell’MTCC Phase 1 Phase 2 Attivita’ dopo l’MTCC Stato cablaggio Stato sistema monitoring del gas Stato dell’elettronica. Single & Double Gap Production.
E N D
Stato progetto RPCA. Colaleo –INFN BARI Sommario • Stato produzione • Stato installazione e commissioning • RPC nell’MTCC • Phase 1 • Phase 2 • Attivita’ dopo l’MTCC • Stato cablaggio • Stato sistema monitoring del gas • Stato dell’elettronica
Single & Double Gap Production • Produzione Single Gap completata: circa 3000 single gap prodotte e testate • Double Gap production completed 16.5 % of rejection
Chamber Production • Chamber production: 448/480 chambers have been accepted at test sites Bari – Pavia – Sofia • To finish production: • 10 Chambers under test in Bari ready by the end of September • 22 Chambers in construction at General Tecnica • 6 needed for next installation • ready by the end of October
Barrel Commissiong camere all’ISR • Final dressing • Final cooling, HV connectors, temperature sensors • Detector control • Gas leak • Threshold setting and reading • Current vs. HV • Long stability test (15-20 days @ 9200 V) • Performance • Single rate (hits count.) vs. HV • Noise rate (cluster count.) vs. HV • Cluster size vs. HV 416 chambers already accepted through the ISR pipeline 24 chambers under test – foreseen ready first week october 8 chambers to be tested – foreseen ready end october
Barrel Commissiong camere all’ISR 420 camere sono state testate 4 di queste ancora sotto test di stabilita’ in corrente
Installazione Wheels+1/W+2/W0 installate eccetto settori 1-7 W-1, W-2 installati settori 10,11 + alcune MB4 Settori 1-7 installati underground
Test prima e dopo installazione Coupling Dopo l’accoppiamento all’ISR e prima dell’installazione a SX5: controlli di perdita di gas, intergrita’ HV, controllo di connettivita’ delle strip e sistema controllo soglie schede FE, controllo sistema cooling (RPC/DT/MC) • Dopo l’installazione : • Connessione cavi di grounding • Gas system test: • Connessione al distributore di gas e calibrazione flow cells • Controllo perdite gas • Equalizzazione dei flussi nella stazione
Commissioning camere installate Barrel • For each sector • HV/LV test • Noise • Current stability for 48 hours Wheel +1 • All basic test done • Chamber sect 5/RB2 replaced due to broken HV cable • 1 FEB connector replaced in sect 9/RB1 • 1 HV connector replaced on sect 12/RB3 Wheel 0/-1/-2 ( 12 sectors) • Basic test done in all sector of W0, excluded sect 4-5 • Broken HV connector in W0 sect 8 RB2 • Discharging HV connector in W0 sect 6 RB2 • Gas rack for W-1, W-2 to be commissioned Wheel +2 • All basic test done • Chamber sect 12/RB3 replaced due to gas leak • 3 Distribution Board replaced on sect 9/4 RB1 chambers (wrong threshold control via DT MC (backup line)). • 1 FB replaced in sect 9 /RB2.
CERN 22 June 2006, CMS Plenary CMS RPC Collaboration Commissioning camere installate Barrel Current HV 9200 V < 1.5 microA Noise rate HV 9200 V Hz/strip Strip = 420 cm2 < 0.25 Hz/cm2
SX5 planning after the field mapping A. Benvenuti W.Van Doninck
Attivita’ a SX5 dopo MTCC II Status Detector installation • YB-1: 24 DT - 48 RPC - QUASI TUTTE GIA’ ACCOPPIATE • Large MB4 : 8 Chambers - 16 RPC • YB-2: 26 Chambers - 52 RPC • YB0 feet: 2Chambers - 2 RPC • UX YB+2, YB+1: 16 Chambers - 32 RPC 150 RPC da installare • DT+RPC coupling must proceed at 3 chambers/day in order to match the installation rate during the first 3 weeks • UX installation rate of 2 chambers/day assumed for YB+2 and of 3 for YB+1
Attivita’ a SX5 dopo MTCC II Detector commissioning W0 sector 4-5 SX5 W-1, W-2 all sectors UX W+1 , W+2 sect 1-7 Gas system Gas distributor commissioning on W-1, W-2 Cabling W0 cabling Electronics Installation of LV boards in W+1 and W+2 Installation of Linkboard on W+1 and W+2 Functionality test of full link system
CB PAC PAC SU Coder SU Coder SU Coder GB & Sorter PAC Slave LB Master LB Slave LB PAC RMB MTCC Test the full chamber/electronics/DAQ/Software chain and trigger system I2C RBC Trigger RBC Trigger Board FEB LTC LVDS signal FEB FEB RPC Chambers TC Backplane Data Concentrator Card On Tower Filter Farm Phase 2 YB+1 S10: LBB with 15 LBs and RBC1 YB+2 S10: LBB with 15 LBs, S11: LBB with 3 LBs and RBC2 Control Room • Trigger Crate with the 1 Trigger Board with: • 14 optical links from LBs, • Stratix2 PAC mezzanine board, • Control Crate with CSC • TTC crate with LTC, TTCci and TTCex
RBC1 W+1: Sect. 10 W+2: Sect. 10 Sect. 11 Sect.10-11 patterns RBC2 OR RPC triggers al MTCC RBC • Separate triggers (LVDS signals) for each wheel to LTC • Patterns based on OR of all strips of one eta partition (roll) of one chamber (i.e. one LB) calculated by each LB, no patterns crossing 2 wheels, • Each chamber can be masked or forced, • Configurable majority level, usually we used: • 5/6- trigger rate ~30 Hz per wheel • 6/6 - trigger rate ~14 Hz per wheel • patterns for the endcap and W+2 Sector 10 only: majority level 4/6 • final geometry straight patterns on single strips for the tower 2 (W+1) (majority level 4/6) • "pointing to the tracker": based on OR of all strips of one eta partition (roll) of one chamber, majority level 5/6, the 6th layer - RB4 (only middle strips) is required TB TB and RBCs triggers were well synchronized to each other
RPC al MTCC: servizi Gas Minor problems with the gas distribution. A faulty IR analyzer was often producing false alarms. Optimize gas bottle replacement. Equalization of the gas flow among the different stations has been proved to be possible and no variation observed in B-Fied Interlock system is working (CAEN ) Gas system control information not available in Control Room. Operation in open loop. Cooling Some of the chamber at T > 24 C° for few days. Very important to have stable and low temperature. Wheel W+2 at higher temperature with respect to W+1. To be understood.
MTCC: LV/HV/FEB HV/LV LV stable system. Noise induced by the system on the detector is extremely low ( peak to peak ripple about 30 mVolts). An unexpected instability of the current readout was found, not previously detected in the lab tests (B field or ADC instability?). CAEN at work Only a couple of faulty connectors on the multi-polar HV cable on the patch panel side. No faulty FEB. Threshold control to be improved to have the possibility of addressing a single board.
MTCC:DCS and DSS The final state machine works very well. System run smoothly reading 300 hardware channels. No problems found. The present DCS server was appropriate to deal with the existing hardware. DSS: wrong gas mixture signal to DSS implemented for MTCC phase 2 problem in cooling circuit (low flow or high temperature) to be implemented in phase 2
MTCC: Iguana Event Display RPC detector data were read out locally with TriggerBoard PAC diagnostic readout and offline converted to common data format of global DAQ standard CMSSW tools for unpacking and DQM used DT global (4 stations) and Barrel RPC local data (6 layers) merged offline Black = DT hits Green = RPC hits Combined offline RPC (green) and DT digis
Analisi preliminare: DQM Occupancy, noise, cluster size, noise maps. Refine threshold values. DT/RPC reconstruction tools needed.
Efficiency plateau RBC1 and RBC2 triggers vs. variation of the RPCs HV set points 6/6 - trigger rate ~14 Hz per wheel
MTCC II plans Phase 2 will allow the RPC to run closely to the final configuration • Complete trigger chain: LB → TB→ HSB→ FSB → GMT • Final geometry – pointing to the vertex: 3 Sectors × 7 Towers 2 Trigger Crates × 2 TBs × 3(4) PACs Final PAC and Ghost Buster and Sorter algorithms can be tested, no special firmware needed! • PAC patterns – final patterns (vertex muons), but wider i.e. defined on 4 or 8 strips (to have better acceptance) • Normal DAQ: 4 RMB mezzanines + DCC Warsaw
RPC cable status • Cable detector – rack installation status: • W+2 and W+1 cabling completed (40 % of the cables on detector) • Cables detector – rack for W0 produced • to be tested • Ready end of October LB crates • LB crates installed and backplane cabled on both wheels (except X3 and X4 near)
Work in progress • Production and installation of W0, W-1, W-2 • Routing of the long cables • between detector hall and electronic house • patch panel organisation • production of cables not on detector
GAS monitoring • Gas gain monitoring system • Sviluppo del conceptual design, approvato CSN1 maggio 2006 e parzialmente finanziato, • Studio dei flussi di gas all’interno di RPC gaps tramite simulazione CFD volta a verificare il lavaggio efficace delle camere e l’eventuale ristagno di contaminanti • Analisi SEM-EDS e diffrattometriche (c/o laboratori di Ingegneria Roma 1) su camere irraggiate alla GIF nel 2001, • Studio di differenti sistemi di analisi gas: ph-metri, µGC analysis , F- specific eletrode • Caratterizzazione del sistema di ricircolo del gas “Closed Loop” • Campagna di misure sistematiche per la caratterizzazione chimica dei filtri impiegati
UXC5 USC5 Gas Gain Monitor (conceptual design) • Monitoring continuo del punto di lavoro (efficienza, carica) con cosmici nel gas building su 3 sottosistemi di RPC pads 50cmx50cm nello stesso telescopio • REFERENCE con gas clean open-loop • MONITOR “OUT” con gas closed-loop dopo CMS-RPC • MONITOR “IN” con gas closed-loop dopo purifiers e prima di CMS VENT RPC TRIG1 RPC TRIG2 Slow Ctrl GC, p/T/RH/Ph MONITOR RPC PAD MON1 RPC PAD MON2 RPC PAD MON3 VENT RPC PAD MON4 RPC PAD MON5 CMS RPC PAD MON6 PURIFIERS MPX REFERENCE half wheel lines VENT RPC PAD REF1 RPC PAD REF2 Studi di fattibilita’ con su RPC recuperati e sviluppo elettronica ad hoc a Frascati. C2H2F4/SF6 /i-C4H10 /H2O VENT RPC TRIG3 RPC TRIG4 SGX Bldg
Studio del sistema di Closed Loop • In operazione da Sept. 05 sul circuito di gas dell’ ISR • circa 110 l/h flusso totale • 30 linee – ma generalmente ~10 Ch. connessi • Percentuale di miscela fresca : 10% (RH 40%) Da molti studi del sistema risulta che funziona correttamente per circa 20 giorni dopodiche’ si osserva innalzamento delle correnti in alcune camere. Le correnti tornano nei valori normali in seguito alla rigenerazione dei filtri Sono in corso campagne di misure sistematiche su campioni di filtri con metodi chimici, SEM/EDS e diffrattometrici. Studio del sistema di closed loop e’ cruciale per una operazione sicura degli RPC nell’esperimento: importante realizzare un test esaustivo all’ISR e alla GIF dopo installazione camere (Primavera 07)
LBBox LBBox LBBox LBBox LBBox LBBox RBC RBC RBC RBC RBC RBC LBBox LBBox LBBox LBBox LBBox LBBox Fiber TTU Wheel Trigger TTU GLOBAL TRIGGER Barrel Wheel TTU TTU 6 Fibers/wheel TTU RBC (RPC Balcony Collector) Technical Trigger Unit Progetto RPC Technical Trigger Wheel-Based Cosmic Trigger • Receive optical link from RBCs • Combine ORs from 1 Wheel and produce Wheel Cosmic Trigger Global Trigger as Technical Trigger The required functions are performed by the RPC Trigger Board (Warsaw): 3 TB for full the barrel UXC area USC area The full RBC production is expected to be available before the end of 2006 The design of the new firmware and the backplane for the Trigger Board-TTU will start in few weeks
Progetto SORTER RPC Trigger Electronics System (general view)
Half detector Sorter 1 Half detector Sorter 2 Final Sorter Board Endcaps Outputs Input from Trigger Crate Barrel Outputs Progetto SORTER Sorter Crate layout Un crate completo e' stato prodotto, testato al 904 ed installato Un backplane ed un Full sorter spare sono gia' stati prodotti e sono da testare,mentre sono in produzione due half-sorter spare. Algorimi del Sorter saranno testati al MTCC fase 2
Conclusioni • Produzione e test delle camere in Italia termina in Ottobre • Test al CERN procedono a ritmo sostenuto : 412 camere testate, 32 camere ancora da testare per la prossima installazione. • Intensa attivita’ di accoppiamento/installazione e commissioning prevista per fine anno. Importante effettuare test dell’elettronica (Link system) in superficie • MTCC costituisce un importante test di tutta la catena di trigger/DCS e di lettura del rivelatore: differenti tipi di trigger sono stati implementati con il sistema RPC durante il test. Intensa attivita’ di software sull’DQM /event display per garantire una immediata interpretazione dei dati. • Sviluppo del sistema di gas monitoring e comprensione sistema di ricircolo sono fondamentali per garantire le prestazioni delle camere nel tempo. • Cablaggio 40 % dei cavi installati. Progressi nell’integrazione dei cavi con il resto del sistema e degli altri rivelatori • Iniziata la produzione e test dell’elettronica per RBC/TTU e Sorter.