380 likes | 527 Views
The Quest for the spin of the proton ! or. “You think you understand something? Now add spin…” - R. Jaffe. D G. S q L q. L g. S q D q. S q D q. L g. S q L q. d q. D G. d q. How do the partons contribute. Is the proton looking like this?. gluon spin. “Helicity sum rule”.
E N D
The Quest for the spin of the proton ! or “You think you understand something? Now add spin…” - R. Jaffe PheniX- FoCal - Workshop, May 2009
DG SqLq Lg SqDq SqDq Lg SqLq dq DG dq How do the partons contribute Is the proton looking like this? gluon spin “Helicity sum rule” Where do we stand solving the “spin puzzle” ? angular momentum total u+d+s quark spin PheniX- FoCal - Workshop, May 2009
γ* u,d,s,g γ* p,K u,d,s p,K jet u,d,s,g u,d,s,g u,d,s,g Dq & DG contributions to the proton spin Existing data from: polarized SIDIS Dqf polarized DIS SqDq, DG • to extract polarized PDFs • !a “global QCD analysis” is required ! • all processes tied together: • universality of pdfs & Q2 – evolution • each reaction provides insights into • different aspects and kinematics • in NLO • DSSV PRL101:072001,2008 polarized pp scattering Dqf, DG PheniX- FoCal - Workshop, May 2009
Inclusive World data • Inclusive DIS-Data: not in DNS : input to the old GRSV-analysis : input to the DIS & SIDIS – analysis by DNS PheniX- FoCal - Workshop, May 2009
Semi-Inclusive World Data • Semi-inclusive DIS-Data: not in DNS PheniX- FoCal - Workshop, May 2009
c2DIS c2SIDIS Duv Ddv Du Dd Ds Dg DS Kretzer -0.049 -0.051 206 225 0.94 -0.34 -0.055 0.28 KKP -0.11 -0.045 206 231 0.70 -0.26 0.087 0.31 0.813 -0.458 0.036 -0.115 -0.057 0.242 DSS NLO FIT to World Data NLO @ Q2=10 GeV2 D. De Florian et al. arXiv:0804.0422 • includes all world data from DIS, SIDIS and pp • Kretzer FF favor SU(3) symmetric sea, not so for KKP, DSS • DS ~25-30%in all cases PheniX- FoCal - Workshop, May 2009
New semi-inclusive data • Compass: Deuterium-Data: x large x-range 0.005 < x < 0.2 Proton data still to come Will the RHIC W-data really be competitive ?? x-range and statistics (300 pb-1 polarization: 0.7) but no FF-knowledge required PheniX- FoCal - Workshop, May 2009
Polarized Strangeness Driven by SIDIS K-Asymmetries K-FF dominated by New Results from isoscaler method AK++K- & Aincl “Purity” Method using FF Driven by SU(3); (3F-D) Results are completely consistent with Hermes sea quark polarizations ~ 0 Big question: What will happen to DSSV-Ds PheniX- FoCal - Workshop, May 2009
dotted: CTEQ-6L & fit dashed: Fit x-dependence of multiplicities using PDFs from CTEQ-6 More on Strangeness PDF • Kaon multiplicities from Deuterium target • strange quark sea in proton and neutron identical • fragmentation simplifies • Only assumptions used: • isospin symmetry between proton and neutron • charge-conjugation invariance in fragmentation dashed-dotted: solid: S(x)= Q(x): CTEQ-6L & DSS s(x) + sbar(x) PheniX- FoCal - Workshop, May 2009
The Gluon Polarization RHIC: many sub-processes with a dominant gluon contribution high-pT jet, pion, heavy quark, … in NLO unpolarised cross sections nicely reproduced in NLO pQCD PheniX- FoCal - Workshop, May 2009
STAR RHIC Data GRSV curves with cone radius 0.7 and -0.7 < < 0.9 2005 jet data: PRL 100, 232003 (2008) p0 @ 200 GeV 2005:PRD 76, 051106 2006: arXiv:0810.0694 PheniX- FoCal - Workshop, May 2009
x small-x 0.001· x · 0.05 RHIC range 0.05·x· 0.2 large-x x¸ 0.2 The Gluon Polarization • Dg(x) very small at medium x • best fit has a node at x~0.1 • huge uncertainties at small x • small-x behavior completely • unconstrained Dg(x) small !? Need to enlarge x-range PheniX- FoCal - Workshop, May 2009
+ + + .. less sub-processes contributing h±h± higher statistics more sub-processes contributing q q higher statistics qg less sub-processes contributing g h± g more sub-processes contributing Compass & Hermes: The golden channels for Dg Idea: Direct measurement ofDG Isolate the photon gluon fusion process • detection of hadronic final states • charmed mesons • high pT pairs of hadrons • single high pT hadrons • Several possible contributions to the measured asymmetry • MC needed to determine R and aLL h±h±vs. h±: h±more inclusive → pQCD NLO calculations (easier) possible Important at Q2<0.1 PheniX- FoCal - Workshop, May 2009
Dg from electro production DSSV gluon agrees well with model-dependent “LO” extractions of Dg/g not in global fit [NLO not available] a future global NLO fit will use measuredALLnot derived Dg/g need first to check unpolarized cross section PheniX- FoCal - Workshop, May 2009
X. Ji, D. Mueller, A. Radyushkin (1994-1997) Proton form factors, transversecharge & current densities Structure functions, quark longitudinal momentum & helicity distributions Beyond form factors and quark distributions Generalized Parton Distributions Correlated quark momentum and helicity distributions in transverse space - GPDs PheniX- FoCal - Workshop, May 2009
How to access GPDs? quantum number of final state selects different GPDs: • theoretically very clean • DVCS(g):H, E, H, E • VM(r, w, f):H E • info on quark flavors • PS mesons(p, h):H E ~ ~ ~ ~ PheniX- FoCal - Workshop, May 2009
VM production @ small x W &t dependences: probe transition from softhard regime r f J/Y U s ~ Wd s ~ e-b|t| steep energy dependence of s in presence of the hard scale universality of b-slope parameter: point-like configurations dominate PheniX- FoCal - Workshop, May 2009
p + D DVCS Bethe-Heitler (BH) isolate BH-DVCS interference term non-zero azimuthal asymmetries Deeply Virtual Compton Scattering DVCS most clean channel for interpretation in terms of GPDs HERMES / JLAB kinematics: BH >> DVCS two experimentally undistinguishable processes: can measure DVCS – cross section and I PheniX- FoCal - Workshop, May 2009
DVCS HERMES: combined analysis of charge & polarization dependent data separation of interference term + DVCS2 Beam Spin Asymmetry DVCS Beam Charge Asymmetry higher twist higher twist PheniX- FoCal - Workshop, May 2009
DVCS from & Archiv: 0812.2517 only some appetizers on existing data lets see what theory says PheniX- FoCal - Workshop, May 2009
Results from Theory Lattice: K. Kumericki & D. Mueller arXiv: 0904.0458 contribution to nucleon spin CLAS BSA Hermes BCA First hints for a small JqLq Hall A Hall A mp2 GeV2 different GPD parametrisations LHPC Collab. hep-lat/0705.4295 t=0 t=-0.3 PheniX- FoCal - Workshop, May 2009
More insights to the proton - TMDs Explore spin orbit correlations Single Spin Asymmetries Unpolarized distribution function q(x), G(x) Transversity distribution function dq(x) Siversdistribution function Boer-Muldersdistribution function Correlation between and Helicity distribution function Dq(x), DG(x) peculiarities of f^1T chiral even naïve T-odd DF related to parton orbital angular momentum violates naïve universality of PDFs QCD-prediction: f^1T,DY = -f^1T,DIS also valid for BM-fcth^1 Correlation between and Correlation between and PheniX- FoCal - Workshop, May 2009
Transverse Polarization Effects @ RHIC • Naive pQCD (in a collinear picture) predicts AN ~ mq/sqrt(s) ~ 0 Left -Right However, large ANobserved in forward pions / Kaons. Proposed mechanisms - Sivers - Collins - twist-3 process - ... need correlations between particles (g-jet) to disentangle underlying process PheniX- FoCal - Workshop, May 2009
HERMES & COMPASS Measurements • Proton: • Sivers moment: • p+ > 0 p- ~ 0 • K+ > 0 K- ~ 0 • K+ > p+ • importance of sea quarks? • Deuterium ~ 0 • u and d quark cancel hep-ex/0802.2160 Deuterium Proton PheniX- FoCal - Workshop, May 2009
COMPASS p-data • M. Anselmino et al. • combine Hermes Proton and Compass Deuterium • add adhoc pt dependence to std. unpol. FF • extract flavor dependent f^1T How does this compare with Compass p-data Bummer, Hermes and Compass Siversp-data disagree What about Transversity? Perfect agreement ! Bummer, Hermes and Compass Siversp-data disagree What about Transversity? PheniX- FoCal - Workshop, May 2009
The Boer-Muldersfct. Unpol. SIDIS cross section: Boer-Muldersx Collins FF L.P. Gamber & G.R. Goldstein PRD 77, 094016, 2008 • remember Collins FF: Boer-Muldersfct. for u and d quark seem to have same sign What do we know from DY-experiments??? PheniX- FoCal - Workshop, May 2009
Boer-Mulders fct. in Drell-Yan • Results from DY experiments at Fermi=Lab. and CERN • Lam-Tung relation (PRD 21 2712, 1980) • unpolarized DY: 1-l = 2n New Fermi-Lab DY-Experiment E906 What can we do at RHIC first BM- fct extractions very first hints p-W-DY: valence x valence pd-DY: valence x sea pQCD PheniX- FoCal - Workshop, May 2009
we have just explored the tip of the iceberg you are here Du, Dd Conclusions Dutot, Ddtot What are the avenues for further important measurements andtheoretical developments? Dg Ds TMDs Lq,g spin sum rule Thank you for your attention PheniX- FoCal - Workshop, May 2009
BACKUP SLIDES PheniX- FoCal - Workshop, May 2009
Du(x), Dd(x) ~ 0 • In measured range (0.023 – 0.6) • No indication forDs(x)<0 Polarised opposite to proton spin Polarised parallel to proton spin Polarized Quark Densities • First complete separation of • pol. PDFs without assumption on • sea polarization Dd(x) < 0 • Du(x) > 0 good agreement with NLO-QCD PheniX- FoCal - Workshop, May 2009
DSS: good global fit of all e+e-, ep, and pp hadron data main results: de Florian, Sassot, MS • results for p±, K±, chg. hadrons • full flavor separation for DiH(z) andDgH • uncertainties (L.M.) well under control • fits all LEP, HERMES, SMC, RHIC, … data • supersede old fits based only on e+e- data PheniX- FoCal - Workshop, May 2009
accessing GPDs: some caveats but only x and t accessible experimentally xis mute variable (integrated over): • apart from cross-over trajectory (x=x)GPDs not directly • accessible: deconvolution needed ! (model dependent) GPD moments cannot be directly revealed, extrapolationst0are model dependent e.g. t=0 q(x) x=0 q(x) cross sections & beam-charge asymmetry ~ Re(TDVCS ) beam or target-spin asymmetries ~ Im(TDVCS ) PheniX- FoCal - Workshop, May 2009
RHIC pp data (BRAHMS, STAR)explain different Dg smaller u & larger s-frag. required by SIDIS note: some issues with K- data (slope!) await eagerly final HERMES data detour: DSS kaonFF’sDiK(z) PheniX- FoCal - Workshop, May 2009
~ DsC~cosf∙Re{ H+ xH +… } ~ DsLU~sinf∙Im{H+ xH+ kE} DsUT polarization observables: ~ DsUL~sinf∙Im{H+ xH+ …} beam target DVCS ASYMMETRIES different charges: e+ e-(only @HERA!): H H ~ H DsUT~sinf∙Im{k(H- E) + … } H, E kinematically suppressed x = xB/(2-xB ),k = t/4M2 PheniX- FoCal - Workshop, May 2009
probing partons with specified long. momentum @transverse position b T What does theory tell [M. Burkardt, M. Diehl 2002] FT (GPD) : momentum space impact parameter space: polarized nucleon: u-quark d-quark [x=0] from lattice PheniX- FoCal - Workshop, May 2009
Sivers function and OAM Model dependent statement: Siversfct. from fit to M. Burkardt et al. anomalous magnetic moment: ku = 1.67 kd = -2.03 Lattice: P. Haegler et al. lowest moment of distribution of unpol. q in transverse pol. proton and of transverse pol. quarks in unpol. proton x Anselmino et al. arXiv:0809.2677 PheniX- FoCal - Workshop, May 2009
Hermes: Charge and Beam Spin Asymmetry Heavy Targets Beam Charge Asymmetry Beam Spin Asymmetry • Why nuclear DVCS: • constrain nuclear GPDs • constrain models attempting • to describe nuclear matter • neutron and proton matter • distribution in nuclei PheniX- FoCal - Workshop, May 2009
160 GeVμ SM2 SM1 6LiD Target The contemporary experiments Trigger-hodoscopes μFilter ECal & HCal 50 m STAR Detector Beams: √s=200 GeV pp; 50% polarization Lumi: 50 pb-1 RICH MWPC Beam: 27.5 GeVe±; <50>% polarization Target: (un)-polarized gas targets; <85%> polarization Lumi: pol: 5x1031 cm-2/s-1; unpol: 3x1032-33 cm-2/s-1 Data taking finished June 2007 Straws Gems Drift chambers Beam: 160 GeVm: 80% polarization Target: 6LiD: 50% polarization (2002-2006) NH3: 80% polarisation (2007) Lumi: 5x1032 cm-2s-1 Micromegas Silicon SciFi PheniX- FoCal - Workshop, May 2009