1 / 33

Energiatermelés a sejtekben, katabolizmus

Energiatermelés a sejtekben, katabolizmus. Táplálék: fehérje + zsír + szénhidrát. Az energiaközvetítő molekula: ATP. Szénhidrátok. Legfontosabb energiaforrásaink Keményítő formájában van jelen általában A vékonybélig csaknem teljesen glükózzá alakul

rufus
Download Presentation

Energiatermelés a sejtekben, katabolizmus

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Energiatermelés a sejtekben, katabolizmus Táplálék: fehérje + zsír + szénhidrát. Az energiaközvetítő molekula: ATP

  2. Szénhidrátok • Legfontosabb energiaforrásaink • Keményítő formájában van jelen általában • A vékonybélig csaknem teljesen glükózzá alakul • Bélhámsejtek kefeszegélyesek a jobb felszívódás érdekében • A glükóz feldúsul a bélhámejtekben, további csak nagy energiabefektetéssel vihető be. • Minden sejt kipumpálja a Na-ot a sejten kívüli térbe, helyébe K-ot visz => Na be akar jutni. ATP!! • Glükóz Na-mal együtt megy be => SZIN PORT ez energia-felszabadulással megy végbe, kapcsolt reakció • A bélhámsejt bazális oldalán kapillárisok, itt a gl. konc. kisebb => passzív transzporttal megy a gl. • A kapillárisból a véráramba kerül a glükóz. Itt katabolizmussal lebomlik piroszőlősavra. • Sejtben sok K, kevés Na oka: ősóceán összetétele is ilyen volt. 1 ATP => 3Na ki, 2 K be.

  3. Glükóz transzport A glukóz felvételét koncentrációgradiensével szemben, a Na+ elektrokémiai gradiensének megfelelő irányú transzportja hajtja. A Na+ elektrokémiai gradiense azonban előzőleg ATP hidrolízisének terhére alakult ki a Na+, K+ pumpa segítségével.

  4. Metabolizmus = katabolizmus + anabolizmus

  5. Glikolízis Minden emberi sejt képes glikolízisre. A glükóz a metabolizmus központi tápanyaga, minden sejt képes hasznosítani. glykys = édes, lysis = hasítás emberi szervezet napi glükózigénye: kb. 160 g („vegetálás”) központi idegrendszer, agy: 120 g ATP- szintézis: 40 g Intermedierjei anabolikus szerepet is betölthetnek (más anyagokat lehet belőlük szintetizálni) Lehetővé teszi az ATP termelést anaerob körülmények között is.Pl. a vörösvértestekben nincs mitokondrium: ezek csak anaerob működnek; szemlencse érhálózata A kólibaci anaerob körülmények közt csak glikolízist tud, ha van O2, akkor mást is

  6. A glikolízis reakciói Az elsőként megismert metabolikus út. Valamennyi reakciója a citoszolban játszódik le. Enzimei multienzim komplexeket alkotnak Az intermedierek gyors, csatornázott útját biztosítják egyik enzimtől a másikig. A piroszőlősav a mitokondriumban alakul tovább. A multienzim komplex ráül a mitokondriumra Az intermedierek mindegyike foszforilált (negatív töltés) A sejtmembrán átjárhatatlan számukra Reverzibilis és irreverzibilis reakciók

  7. A glikolízis 1. hat szénatomos szakasza • glükóz + ATP glükóz-6-foszfát + ADP • dG > 0 => Spontán nem j. l., de kapcsolt reakcióként (ATP -> ADP) igen • enzimek: glükokináz (csak májsejtekben), hexokináz • irreverzibilis Km értéke kicsi, aktivitása nagy. 0,1mM glükózkonc.-nál már vmax/2-vel megy. Vérben 4-6 mM. Ha nem lenne szabályozva, akkor a hexokináz pillanatok alatt elfogyasztaná az összes cukrot.

  8. 2. glükóz-6-foszfát fruktóz-6-foszfát enzim: foszfoglükóz-izomeráz reverzibilis 3. Fruktóz-6-foszfát + ATP fruktóz-1,6-biszfoszfát + ADP A glikolízis elkötelező reakciója, ha ez megvan, innentől már nincs visszaút. enzim: foszfofruktokináz I irreverzibilis

  9. 4. fruktóz-1,6-biszfoszfát glicerinaldehid-3-foszfát dihidroxi-aceton-foszfát enzim: aldoláz, reverzibilis 5. A két triózfoszfát átalakulhat egymásba trióz-foszfát-izomeráz katalizálta, reverzibilis reakció során.

  10. A glikolízis 2. három szénatomos szakasza 6. glicerinaldehid-3-foszfátból 1,3-biszfoszfoglicerát As mérgezés ezt gátolja enzim: glicerinaldehid-3-foszfát dehidrogenázreverzibilis 7. 1,3-biszfoszfoglicerát + ADP3-foszfoglicerát + ATP enzim: foszfoglicerát kináz, reverzibilisszubsztrát szintű foszforiláció 8. 3-foszfoglicerát 2-foszfoglicerát enzim: foszfoglicerát mutáz, reverzibilis

  11. 9. 2-foszfoglicerátfoszfoenolpiruvát enzim: enoláz (2-foszfoglicerát anhidratáz)reverzibilis 10. foszfoenolpiruvát + ADP piruvát + ATP enzim: piruvát kináz,irreverzibilis szubsztrát szintű foszforiláció

  12. A keletkezett piruvát sorsa a sejt típúsától, illetve oxigénellátottságától függ aerob: piruvát acetil-CoA (mitokond.ban)citrátciklus NADH anaerob: piruvát laktát (enzim: laktát-dehidrogenáz) acetaldehid piruvát dekarboxiláz etanol alkoholos erjedés Izomláz: nincs elég O2, tejsav felhalmozódik az izomban. Alkoholos erjedés élesztőgombákban van.

  13. A glikolízis energiamérlege anaerob: glükóz + 2Pi + 2 ADP 2 laktát + 2 ATP + 2 H2O aerob: glükóz + 2Pi + 2 ADP + 2 NAD+ 2 piruvát + 2 ATP + 2 H2O + 2 NADH + 2 H+ S: 36-38 ATP 2 NADH 4-6 ATP 2 piruvát 2*1 FADH2 2*4 NADH 4 ATP 24 ATP 2 GTP

  14. Pasteur-effektus • TFH 100 egys. ATP kell egy bacinak • Lehet aerob és anaerob is. Pl. coli • 100 ATP-hez a gyorsabb anaerob szintézis kell

  15. Glükoneogenezis Glükóz szintézis nem szénhidrát prekurzorokból (tejsav, glükoplasztikus aminosavak, glicerol, propionsav). Három lépés kivételével a glikolízis megfordítása. Kivételek az irreverzibilis lépések és az őket katalizáló enzimek: 1. Hexokináz 2. Foszfofruktokináz I 3. Piruvát kináz A glükoneogenezis mindig energiaigényesebb, mint a glikolízis

  16. 1. piruvát foszfoenolpiruvát, kétlépéses reakció enzimek: piruvát karboxiláz (biotin kofaktor, enetgiaigényes: ATP) foszfoenolpiruvát karboxikináz (energiaigényes: GTP) A glükoneogenezis enzimei két kivétellel a citoszolban helyezkednek el. 1. piruvát karboxiláz a mitokondriumban lokalizálódik transzport a citoszolba (aszpartát, malát) 2. glükóz-6-foszfát foszfatáz: endoplazmás retikulum

  17. A foszfoenolpiruváttól a fruktóz-1,6-biszfoszfátig a köztes termékek keletkezését a glikolízisnél megismert enzimek katalizálják

  18. 2. Fruktóz-1,6-biszfoszfatáz Citoszolban, de más az enzim: fruktóz-1,6-bifoszfatáz enzim + Pi 3. Glükóz-6-foszfatáz Az enzim az endoplazmás retikulum membránjában található (intraluminális topológia) glükóz transzporter A glükóz kitranszportálódik a sejtplazmába, majd onnan a véráramba

  19. Energiaigényes folyamat: 2 laktát + 6 ATP 1 glükóz + 6 ADP + 6 Pi Glükoneogenezis a májban és a vesében folyik, fő helyszíne a máj. Máj: cukorraktár + cukorgyár Cori-ciklus Cukrot eszem + futok -> laktát -> véráram -> máj -> piruvát -> glükóz -> izom felveszi -> cukrot eszem + futok

  20. A glikolízis és a glükoneogenezis szabályozása Éhezéskor. Prekurzor: tejsav, gl.plasztikus a.savak, glicerol, propionsav A közös intermedierek és enzimek révén összefüggő folyamatok. A glukoneogenezis néhény kivételtől eltekintve a glikolízis a “feje tetejére” állítva Bármelyik folyamat gátlása a másik stimulálását jelenti Mindkét folyamat szabályozása az irreverzibilis lépéseket katalizáló enzimeken keresztül történik. Glikolízis: 1. Hexokináz 2. Foszfofruktokináz I 3. Piruvát-kináz Glükoneogenezis: 1. Piruvát karboxiláz 2. Fruktóz-1,6-biszfoszfatáz

  21. A szabályozás alapja: - milyen az adott sejt energiaállapota (ATP, AMP, citrát) - változik-e az intracelluláris pH - milyen a szervezet energiaállapota (fruktóz-2,6-biszfoszfát), hormonális szabályozás

  22. 1. Sejt energiaállapota, az ATP és az AMP hatása ATP: allosztérikusan gátolja a foszfofruktokináz I-t és a piruvát kinázt ATP-koncentráció növekedése lassítja a glikolízist 2 ADP ATP + AMP [ATP] >> [ADP] >> [AMP] adenilát-kináz Kis csökkenés az [ATP] nagy emelkedés az [AMP] AMP: allosztérikus aktívátora a foszfofruktokináz I-nek allosztérikus gátlója a fruktóz-1,6-biszfoszfatáznakserkenti a glikolízist, gátolja a glukoneogenezist

  23. Citrát: a foszfofruktokináz I allosztérikus gátlószere Citrát kör szénhidrátok zsírsavak, ketontestek zsírsavat oxidáló sejtekben csökken a glukózfelhasználás Glukózszint megtartása, csak glukózt felhasználó szervek kímélése A zsírsavoxidációkor keletkező Ac-CoA aktíválja a piruvát karboxiláztserkenti a glukoneogenezist Ugyanakkor gátolja a piruvát kinázt

  24. A foszfofruktokináz I allosztérikus szabályozása

  25. 2. Intracelluláris pH csökkenése (H+ koncentráció emelkedése) a foszfofruktokináz I gátlását okozza. Anaerob glikolízis laktát, H+ Keringésen keresztül a májba jut Cori-kör glukoneogenezis

  26. 3. Hormonális szabályozás, a glukagon és az inzulin hatása • Glukagon: 29 aminosavból áll, a pancreas a-sejtjei termelik • Inzulin: 51 aminosavból áll a pancreas b-sejtjei termelik Glukagon a glikolízis szabályozásában

  27. A májsejtekben a glukagon hatása a glikolízisre és a glukonogenezisre a fruktóz-1,6- biszfoszfát szintjének változásán keresztül érvényesül. A fruktóz-1,6-biszfoszfát pozitív allosztérikus regulátora a glikolízis sebességmeghatározó lépését katalizáló foszfofruktokináz I enzimnek és negatív allosztérikus regulátora a fruktóz-1,6-biszfoszfatáznak Enzim: foszfofruktokináz II A fruktóz-2,6-biszfoszfát fruktóz-6-foszfát átalakulást is képes katalizálni. A reakció irányát az enzim foszforiláltsága dönti el.

  28. A glukagon hatása a glikolízisre a fruktóz-2,6-biszfoszfáton keresztül

  29. A glukagon a fruktóz-2,6-biszfoszfát szint mellett a piruvát kináz aktivitását is befolyásolja. A cAMP függő protein kináz foszorilálja, ezáltal inaktíválja a piruvát kinázt.

  30. Szabályozás a hexokinázon és a glukokinázon keresztül glukóz + ATP glukóz-6-foszfát + ADP Hexokináz: eltérő szöveti izoenzimek, mindegyik esetben: - KM< 1 mM - gátolható glukóz-6-foszfáttal Glukokináz: kizárólag májsejtekben fordul elő: - KM: ~ 10 mM - nem gátolható glukóz-6-foszfátal - génjének átírását az inzulin fokozza

  31. A glikolízis és a glükoneogenezis allosztérikus szabályozása

More Related